Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,428 Article Results

Implementation of Algorithm for Vehicle Anti-Collision Alert System in FPGA

10.11591/.v7i2.pp775-783
Aiman Zakwan Jidin , Lim Siau Li , Ahmad Fauzan Kadmin
Vehicle safety has becoming one of the important issues nowadays, due to the fact the number of road accidents, which cause injuries, deaths and also damages, keeps on increasing. One of the main factors which contribute to these accidents are human's lack of awareness and also carelessness. This paper presents the development and implementation of an algorithm to be utilized for vehicle anti-collision alert system, which may be useful to reduce the occurrence of accidents. This algorithm, which is to be deployed with the front sensors of the vehicle, is capable of alerting any occurrence of sudden slowing or static vehicles ahead, by sensing the rate of distance change. Furthermore, it also triggers an alert if the driver is breaching the safe distance from the vehicle ahead. This algorithm has been successfully implemented in Altera DE0 FPGA and its functionality was validated via hardware experimental tests.
Volume: 7
Issue: 2
Page: 775-783
Publish at: 2017-04-01

The Correlation between Surface Tracking and Partial Discharge Characteristics on Pressboard Surface Immersed in MIDEL eN

10.11591/.v7i2.pp631-640
Nur Amirah Othman , Hidayat Zainuddin , Aminuddin Aman , Sharin Abd Ghani , Imran Sutan Chairul
This paper presents the investigation of the surface tracking on pressboard surface immersed in MIDEL eN oil.  In this work, the development of surface discharge was analyzed by correlating the visual records of surface tracking on impregnated pressboard and the partial discharge (PD) activities.  The PD activities during the surface tracking process were analyzed in terms of Phase Resolved Partial Discharge (PRPD) patterns.  Throughout the experiment, surface discharge is found as the development of tree-like patterns in the form of white marks occurring on the oil-pressboard interface.  This phenomenon is generally accepted as the drying out process that involves evaporation and decomposition of the oil molecules in the pressboard pores due to the surface discharge activities on the pressboard surface layer.  The development of surface discharge on the pressboard surface can continue from minutes to months or even years until failure.  Thus, condition monitoring system is important to characterize this type of faulty condition.  The experimental results show that there is the decreasing trend of PD magnitude during the development of white mark hallway of a gap distance which is eventually suffered from an unexpected fault.
Volume: 7
Issue: 2
Page: 631-640
Publish at: 2017-04-01

The Weights Detection of Multi-criteria by using Solver

10.11591/.v7i2.pp858-868
Fachrurrazi Fachrurrazi , Yuwaldi Away , Saiful Husin
Multi criteria, which are generally used for decision analysis, have certain characteristics that relate to the purpose of the decision. Multi criteria have complex structures and have different weights depending upon the consideration of assessors and the purpose of the decision also. Expert’s judgment will be used to detect the criteria weights that applied by assessors. The aim of this study is a model to detect the criteria weights and biases on the subcontractor selection and detecting the significant weights, as decisive criteria. A method, which is used to modeling the weights detection, is the Solver Application. Data, totaling 40 sets, has been collected that consist of the assessor’s assessment and the expert’s judgment. The result is a pattern of weights and biases detection. The proposed model have been able to detect of 20 criteria weights and biases, that consist of 4 criteria in  the total weights of 60% (as decisive criteria) and 16 criteria in the total weights of 40%. A model has been built by training process performed by the Solver, which the result for MSE training is 9.73711e-08 and for MSE validation is 0.00900528. Novelty in the study is a model to detect pattern of weights criteria and biases on subcontractor selection by transferring the expert's judgment using Solver Application.
Volume: 7
Issue: 2
Page: 858-868
Publish at: 2017-04-01

The Effect of Plasma-Treated Boron Nitride on Partial Discharge Characteristics of LDPE

10.11591/ijece.v7i2.pp568-575
N.A Awang , M.H Ahmad , Y.Z. Arief , I.H. Zakaria , N.A. Ahmad
Power supply reliability is a key factor in a country economic stability. It is contributed by the reliable power distributor via transmission lines, overhead or underground cables. However, the power cables and accessories are always exposed to pre-breakdown phenomena known as partial discharges (PD) which commonly occur in microvoids, defects or protrusions inside the insulation. To improve the performance of the cable insulation against PD, nanofillers are added into the insulating materials. However, to achieve superior performance of PD resistance, the nanofillers must be homogeneously dispersed into the polymer matrices with tightly bonded interfacial zones. Therefore, this could be achieved by employing method of surface functionalization by using cold atmospheric plasma to strengthen the filler/polymer interfaces. In view of foregoing, this study investigated the effects of surface treated boron nitride (BN) nanoparticles in Low Density Polyethylene (LDPE) on the PD characteristics by following CIGRE Method II at 7 kVrms applied voltage. The phase resolved PD characteristics were performed. The results revealed that by treating the nanofillers with cold plasma, the PD resistance of LDPE were highly achieved compared with the untreated BN nanofillers.
Volume: 7
Issue: 2
Page: 568-575
Publish at: 2017-04-01

Quality of Service based Task Scheduling Algorithms in Cloud Computing

10.11591/.v7i2.pp1088-1095
Sirisha Potluri , Katta Subba Rao
In cloud computing resources are considered as services hence utilization of the resources in an efficient way is done by using task scheduling and load balancing. Quality of service is an important factor to measure the trustiness of the cloud. Using quality of service in task scheduling will address the problems of security in cloud computing. This paper studied quality of service based task scheduling algorithms and the parameters used for scheduling. By comparing the results the efficiency of the algorithm is measured and limitations are given. We can improve the efficiency of the quality of service based task scheduling algorithms by considering these factors arriving time of the task, time taken by the task to execute on the resource and the cost in use for  the communication.
Volume: 7
Issue: 2
Page: 1088-1095
Publish at: 2017-04-01

Power Quality Enhancement in Grid Connected PV Systems using High Step Up DC-DC Converter

10.11591/ijece.v7i2.pp720-728
V S Prasadarao K , K V Krishna Rao , P Bala Koteswara Rao , T. Abishai
Renewable energy sources (RES) are gaining more importance in the present scenario due to the depletion of fossil fuels and increasing power demand. Solar energy is the one of the most promising as it is clean and easily available source. The voltage obtained from the PV system is low. This voltage is increased by high step up dc-dc converter which uses only one switch leads to low switching losses and hence the efficiency of this converter is high. To get the good response this converter is operated in closed loop manner. Integration of PV system with existing grid has so many issues like distorted voltage, current and reactive power control etc. This paper presents a four leg inverter which works on hysteresis current control technique to address the power quality issues like reactive power compensation, balanced load currents and compensation of neutral current. The switching to the inverter is designed in such a way that it supplies the extra current to stabilise the current of the grid that is being supplied to the loads. Finally, the proposed technique is validated by using mat lab/Simulink software and corresponding results are presented in this paper.
Volume: 7
Issue: 2
Page: 720-728
Publish at: 2017-04-01

p-Laplace Variational Image Inpainting Model Using Riesz Fractional Differential Filter

10.11591/ijece.v7i2.pp850-857
Sridevi Gamini , S Srinivas Kumar
In this paper, p-Laplace variational image inpainting model with symmetric Riesz fractional differential filter is proposed. Variational inpainting models are very useful to restore many smaller damaged regions of an image. Integer order variational image inpainting models (especially second and fourth order) work well to complete the unknown regions. However, in the process of inpainting with these models, any of the unindented visual effects such as staircasing, speckle noise, edge blurring, or loss in contrast are introduced. Recently, fractional derivative operators were applied by researchers to restore the damaged regions of the image. Experimentation with these operators for variational image inpainting led to the conclusion that second order symmetric Riesz fractional differential operator not only completes the damaged regions effectively, but also reducing unintended effects. In this article, The filling process of damaged regions is based on the fractional central curvature term. The proposed model is compared with integer order variational models and also GrunwaldLetnikov fractional derivative based variational inpainting in terms of peak signal to noise ratio, structural similarity and mutual information.
Volume: 7
Issue: 2
Page: 850-857
Publish at: 2017-04-01

5G Fixed Beam Switching on Microstrip Patch Antenna

10.11591/ijece.v7i2.pp975-980
Low Ching Yu , Muhammad Ramlee Kamarudin
5G technology is using millimeter-wave band to improve the wireless communication system.  However, narrow transmitter and receiver beams have caused the beam coverage area to be limited. Due to propagation limitations of mm wave band, beam forming technology with multi-beam based communication system, has been focused to overcome the problem. In this letter, a fixed beam switching method is introduced. By changing the switches, four different configurations of patch array antennas are designed to investigate their performances in terms of radiation patterns, beam forming angle, gain, half-power bandwidth and impedance bandwidth at 28 GHz operating frequency for 5G application. Mircostrip antenna is preferred due to its low profile, easy in feeding and array configurations. Three different beam directions had been formed at -15°, 0°, and 15° with half-power bandwidth of range 45˚ to 50˚.
Volume: 7
Issue: 2
Page: 975-980
Publish at: 2017-04-01

Performance of Non-Uniform Duty-Cycled ContikiMAC in Wireless Sensor Networks

10.11591/.v7i2.pp942-949
Nur Rabiul Liyana Mohamed , Ansar Jamil , Lukman Hanif Audah Audah , Jiwa Abdullah , Rozlan Alias
Wireless Sensor Network (WSN) is a promising technology in Internet of Things (IoTs) because it can be implemented in many applications. However, a main drawback of WSN is it has limited energy because each sensor node is powered using batteries. Therefore, duty-cycle mechanisms are introduced to reduce power consumption of the sensor nodes by ensuring the sensor nodes in the sleep mode almost of the time in order to prolong the network lifetime. One of the de-facto standard of duty-cycle mechanism in WSN is ContikiMAC, which is the default duty-cycle mechanism in Contiki OS. ContikiMAC ensures nodes can participate in network communication yet keep it in sleep mode for roughly 99\% of the time. However, it is found that the ContikiMAC does not perform well in dynamic network conditions. In a bursty network, ContikiMAC provides a poor performance in term of packet delivery ratio, which is caused by congestion. One possible solution is ContikiMAC should increase its duty-cycle rate in order to support the bursty traffic. This solution creates a non-uniform duty-cycle rates among the sensor nodes in the network. This work aims to investigate the effect of non-uniform duty-cycle rates on the performance on ContikiMAC. Cooja simulator is selected as the simulation tool. Three different simulation scenarios are considered depending on the Clear Channel Assessment Rate (CCR) configurations: a low uniform CCR value (Low-CCR), a high uniform CCR value (High-CCR) and non-uniform CCR values (Non-uniform-CCR). The simulation results show that the Low-CCR scenario provides the worst performance of PDR. On the other hand, the High-CCR scenario provides the best performance of PDR. The Non-uniform-CCR provides PDR in between of Low-CCR and High-CCR.
Volume: 7
Issue: 2
Page: 942-949
Publish at: 2017-04-01

Voltage Compensation In Wind Power System Using STATCOM Controlled By Soft Computing Techniques

10.11591/ijece.v7i2.pp667-680
Bineeta Mukhopadhyay , Rajib Kumar Mandal , Girish Kumar Choudhary
When severe voltage sags occur in weak power systems associated with grid-connected wind farms employing doubly fed induction generators, voltage instability occurs which may lead to forced disconnection of wind turbine. Shunt flexible AC transmission system devices like static synchronous compensator (STATCOM) may be harnessed to provide voltage support by dynamic injection of reactive power. In this work, the STATCOM provided voltage compensation at the point of common coupling in five test cases, namely, simultaneous occurrence of step change (drop) in wind speed and dip in grid voltage, single line to ground, line to line, double line to ground faults and sudden increment in load by more than a thousand times. Three techniques were employed to control the STATCOM, namely, fuzzy logic, particle swarm optimization and a combination of both. A performance comparison was made among the three soft computing techniques used to control the STATCOM on the basis of the amount of voltage compensation offered at the point of common coupling. The simulations were done with the help of SimPowerSystems available with MATLAB / SIMULINK and the results validated that the STATCOM controlled by all the three techniques offered voltage compensation in all the cases considered.
Volume: 7
Issue: 2
Page: 667-680
Publish at: 2017-04-01

Parametric Comparison of K-means and Adaptive K-means Clustering Performance on Different Images

10.11591/ijece.v7i2.pp810-817
Madhusmita Sahu , K. Parvathi , M. Vamsi Krishna
Image segmentation takes a major role to analyzing the area of interest in image processing. Many researchers have used different types of techniques to analyzing the image. One of the widely used techniques is K-means clustering. In this paper we use two algorithms K-means and the advance of K-means is called as adaptive K-means clustering. Both the algorithms are using in different types of image and got a successful result. By comparing the Time period, PSNR and RMSE value from the result of both algorithms we prove that the Adaptive K-means clustering algorithm gives a best result as compard to K-means clustering in image segmentation.    
Volume: 7
Issue: 2
Page: 810-817
Publish at: 2017-04-01

Hybrid Low Complex near Optimal Detector for Spatial Modulation

10.11591/.v7i2.pp818-822
P. Rajani Kumari , K. Chenna Kesava Reddy , K.S. Ramesh
In our previous work maximum throughput in multi stream MIMO is analyzed by overcoming the inter antenna interference. To mitigate the Inter antenna interference spatial modulation can be used. Spatial Modulation(SM) aided MIMO systems are the emerging MIMO systems which are low complex and energy efficient. These systems additionally use spatial dimensions for transmitting information. In this paper a low complex detector based on matched filter is proposed for spatial modulation to achieve near maximum likelihood performance while avoiding exhaustive ML search since MF based detector exhibits a considerable reduced complexity since activated transmitting antenna and modulated amplitude phase modulation constellation are estimated separately. Simulation results show the performance of the proposed method with optimal ML detector, MRC and conventional matched filter methods.
Volume: 7
Issue: 2
Page: 818-822
Publish at: 2017-04-01

Detection of Rogue Access Point in WLAN using Hopfield Neural Network

10.11591/ijece.v7i2.pp1060-1070
Menal Dahiya , Sumeet Gill
The serious issue in the field of wireless communication is the security and how an organization implements the steps against security breach. The major attack on any organization is Man in the Middle attack which is difficult to manage. This attack leads to number of unauthorized access points, called rogue access points which are not detected easily. In this paper, we proposed a Hopfield Neural Network approach for an automatic detection of these rogue access points in wireless networking. Here, we store the passwords of the authentic devices in the weight matrix format and match the patterns at the time of login. Simulation experiment shows that this method is more secure than the traditional one in WLAN.
Volume: 7
Issue: 2
Page: 1060-1070
Publish at: 2017-04-01

Focusing Properties of a Modified Retarding Structure for Linear Electron Accelerators

10.11591/.v7i2.pp741-747
Vladimir Kuz'mich Shilov , Aleksandr Nikolaevich Filatov , Aleksandr Evgen'evich Novozhilov
When using accelerators in industry and medicine, important are the dimensions of the device used, especially the radial ones. In the linear electron accelerators based on a biperiodic retarding structure, which operates in the standing wave mode, there is a possibility to provide focusing of the accelerated particles with the help of high-frequency fields without the use of external focusing elements. In the accelerating cell, due to the presence of the far protruding drift sleeves, the electric field lines become strongly curved, which leads to the appearance in the regions adjacent to these sleeves of a substantial in magnitude radial component of the electric field. The particles entering the accelerating gap experience the action of a force directed toward the axis of the system, and at the exit, of a force directed away from the axis. Under certain conditions, alternation of the focusing and defocusing fields can lead to a general focusing effect. In the paper we study the focusing properties of a modified biperiodic structure with standing wave. The main attention is paid to the possibility of using the focusing properties of the electromagnetic accelerating field for guiding the electron beam through the aperture of the accelerating system, which will lead to a significant reduction in the accelerator sizes. The proposed method can be applied in the calculation and design of linear electron accelerators.
Volume: 7
Issue: 2
Page: 741-747
Publish at: 2017-04-01

Lyot-based Multi-wavelength Fiber Laser

10.11591/.v7i2.pp981-985
Suhairie Saleh , N. A. Cholan , A. H. Sulaiman , M. A. Mahdi
A multi-wavelength fiber laser which is based on a Lyot filter is experimentally demonstrated. A combination of four-wave mixing in a highly nonlinear fiber and Lyot filter mechanism in the laser cavity is able to generate multi-wavelength with relatively high extinction ratio (ER). At the input current of 100mA, six laser lines with ER more than 5 dB are successfully generated. The wavelength spacing for the multi-wavelength is 0.15nm, corresponding to the characteristics of the Lyot filter used.
Volume: 7
Issue: 2
Page: 981-985
Publish at: 2017-04-01
Show 1467 of 1896

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration