Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,593 Article Results

Predictive insights into student online learning adaptability: elevating e-learning landscape

10.11591/ijict.v14i3.pp892-902
Mohamed El Ghali , Issam Atouf , Kamal El Guemmat , Mohamed Talea
In Morocco’s rapidly transforming educational landscape, this study delves into students’ adaptability to online learning environments by integrating sophisticated artificial intelligence (AI) algorithms and hyperparameter optimization techniques. This research uses the comprehensive “online learning adaptivity” dataset to identify pivotal factors influencing student flexibility and effectiveness in e-learning platforms. We applied various AI models, with a particular emphasis on the CatBoost classifier, which exhibited exceptional predictive performance, achieving an accuracy rate near 98%. This high precision in predicting student adaptiveness offers essential insights into tailoring digital education systems. The results underscore the significant potential of machine learning technologies to enhance educational methodologies by catering to the diverse needs of students. Such capabilities are instrumental for educators and policymakers dedicated to refining e-learning strategies that effectively accommodate individual learning styles, ultimately improving the broader educational outcomes in Moroccan tertiary education. These findings advocate for a more nuanced understanding of the interplay between student behavior and technological solutions, providing a roadmap for developing more responsive and effective educational platforms.
Volume: 14
Issue: 3
Page: 892-902
Publish at: 2025-12-01

Does empathy and awareness of bullying affect the performance of Moroccan students in PISA?

10.11591/ijict.v14i3.pp860-867
Ilyas Tammouch , Abdelamine Elouafi , Soumaya Nouna
Socioemotional skills, such as empathy and bullying awareness, play a pivotal role in shaping students' personal and academic development. These skills are increasingly recognized as critical factors influencing educational outcomes, particularly in addressing challenges like bullying that can hinder learning. This study examines the impact of empathy and bullying awareness on the academic performance of Moroccan students, using data from the 2018 Programme for International Student Assessment (PISA). To ensure robust causal inference in high-dimensional data, the double/debiased machine learning (DML) technique is employed. The findings reveal that higher levels of empathy and awareness of bullying significantly enhance performance across reading, mathematics, and science, with the most notable improvements observed in reading. These results remain consistent across various demographic and socioeconomic groups, highlighting their robustness. The study underscores the importance of integrating socioemotional learning into educational practices to foster academic success and create supportive school environments. By contributing to the growing evidence on non-cognitive skills in education, this research offers valuable insights for educators and policymakers seeking to improve student outcomes.
Volume: 14
Issue: 3
Page: 860-867
Publish at: 2025-12-01

State space controller of SLCC and design analysis with MPPT approaches

10.11591/ijict.v14i3.pp791-801
Jeyaprakash Natarajan , Nivethitha Devi Manoharan , Mohanasanthosh Murugan , Karnati Venkata Lokeshwar Reddy , Thirumalaivasal Devanathan Sudhakar
Power systems with standalone properties like remote unit telecommunication network requires high negative DC supply voltage. In such remote places, solar photovoltaic (PV) are used to generate power. Maximum power point tracking techniques (MPPT) gives unregulated voltage from solar panel. This unregulated voltage is converted into regulated voltage by providing proper pulse width modulation (PWM) signal to self-lift cuk converter (SLCC). In comparison with classic cuk converter, SLCC reduces load voltage and load current ripples. This paper focuses on state space controller design and implementation of SLCC used in MPPT based PV system. The switching pulse of SLCC can be generated by perturb and observe (P&O), incremental conductance (IC) and also using fuzzy control. The simulation of SLCC has been performed using MATLAB/Simulink and its specifications in time domain has been compared.
Volume: 14
Issue: 3
Page: 791-801
Publish at: 2025-12-01

Comparative analysis of u-net architectures and variants for hand gesture segmentation in parkinson’s patients

10.11591/ijict.v14i3.pp972-982
Avadhoot Ramgonda Telepatil , Jayashree Sathyanarayana Vaddin
U-Net is a well-known method for image segmentation, and has proven effective for a variety of segmentation challenges. A deep learning architecture for segmenting hand gestures in parkinson’s disease is explored in this paper. We prepared and compared four custom models: a simple U-Net, a three-layer U-Net, an auto encoder-decoder architecture, and a U-Net with dense skip pathways, using a custom dataset of 1,000 hand gesture images and their corresponding masks. Our primary goal was to achieve accurate segmentation of parkinsonian hand gestures, which is crucial for automated diagnosis and monitoring in healthcare. Using metrics including accuracy, precision, recall, intersection over union (IoU), and dice score, we demonstrated that our architectures were effective in delineating hand gestures under different conditions. We also compared the performance of our custom models against pretrained deep learning architectures such as ResNet and VGGNet. Our findings indicate that the custom models effectively address the segmentation task, showcasing promising potential for practical applications in medical diagnostics and healthcare. This work highlights the versatility of our architectures in tackling the unique segmentation challenges associated with parkinson’s disease research and clinical practice.
Volume: 14
Issue: 3
Page: 972-982
Publish at: 2025-12-01

Multilingual hate speech detection using deep learning

10.11591/ijict.v14i3.pp1015-1023
Vincent Vincent , Amalia Zahra
The rise of social media has enabled public expression but also fueled the spread of hate speech, contributing to social tensions and potential violence. Natural language processing (NLP), particularly text classification, has become essential for detecting hate speech. This study develops a hate speech detection model on Twitter using FastText with bidirectional long short-term memory (Bi-LSTM) and explores multilingual bidirectional encoder representations from transformers (M-BERT) for handling diverse languages. Data augmentation techniques-including easy data augmentation (EDA) methods, back translation, and generative adversarial networks (GANs)-are employed to enhance classification, especially for imbalanced datasets. Results show that data augmentation significantly boosts performance. The highest F1-scores are achieved by random insertion for Indonesian (F1-score: 0.889, Accuracy: 0.879), synonym replacement for English (F1-score: 0.872, Accuracy: 0.831), and random deletion for German (F1-score: 0.853, Accuracy: 0.830) with the FastText + Bi-LSTM model. The M-BERT model performs best with random deletion for Indonesian (F1-score: 0.898, Accuracy: 0.880), random swap for English (F1 score: 0.870, Accuracy: 0.866), and random deletion for German (F1-score: 0.662, Accuracy: 0.858). These findings underscore that data augmentation effectiveness varies by language and model. This research supports efforts to mitigate hate speech’s impact on social media by advancing multilingual detection capabilities.
Volume: 14
Issue: 3
Page: 1015-1023
Publish at: 2025-12-01

Unit commitment problem solved with adaptive particle swarm optimization

10.11591/ijict.v14i3.pp783-790
Ramesh Babu Muthu , Venkatesh Kumar Chandrasekaran , Bharathraj Munusamy , Dashagireevan Sankaranarayanan
This article presents an innovative approach that solves the problem of generation scheduling by supplying all possible operating states for generating units for the given time schedule over the day. The scheduling variables are set up to code the load demand as an integer each day. The proposed adaptive particle swarm optimization (APSO) technique is used to solve the generation scheduling issue by a method of optimization considering production as well as transitory costs. The system and generator constraints are considered when solving the problem, which includes minimum and maximum uptime and downtime as well as the amount of energy produced by each producing unit (like capacity reserves). This paper describes the suggested algorithm that can be applied for unit commitment problems with wind and heat units. Test systems with 26 and 10 units are used to validate the suggested algorithm.
Volume: 14
Issue: 3
Page: 783-790
Publish at: 2025-12-01

Quantifying the severity of cyber attack patterns using complex networks

10.11591/ijict.v14i3.pp1179-1188
Ahmed Salih Hasan , Yasir F. Mohammed , Basim Mahmood
This work quantifies the severity and likelihood of cyberattacks using complex network modelling. A dataset from common attack pattern enumerations and classifications (CAPEC) is collected and formalized as nodes and edges aiming at creating a network model. In this model, each attack pattern is represented as a node, and an edge is created between two nodes when there is a relation between them. The dataset includes 559 attack patterns and 1921 relations among them. Network metrics are used to perform the analysis on the network level and node level. Moreover, a rank of the CAPECs based on a complex network perspective is generated. This rank is compared with the CAPEC ranking system and deeply discussed based on cybersecurity perspective. The findings show interesting facts about the likelihood and severity of attacks. It is found that the network perspective should be given attention by the CAPEC ranking system. Finally, the results of this work can be of high interest to security architects.
Volume: 14
Issue: 3
Page: 1179-1188
Publish at: 2025-12-01

Empowering low-resource languages: a machine learning approach to Tamil sentiment classification

10.11591/ijict.v14i3.pp941-949
Saleem Raja Abdul Samad , Pradeepa Ganesan , Justin Rajasekaran , Madhubala Radhakrishnan , Peerbasha Shebbeer Basha , Varalakshmi Kuppusamy
Sentiment analysis is essential for deciphering public opinion, guiding decisions, and refining marketing strategies. It plays a crucial role in monitoring public sentiment, fostering customer engagement, and enhancing relationships with businesses' target audiences by analyzing emotional tones and attitudes in vast textual data. Sentiment analysis is extremely limited, particularly for languages like Tamil, due to limited application in diverse linguistic contexts with fewer resources. Given its global impact and linguistic diversity, addressing this gap is crucial for a more nuanced understanding of sentiments in India. In the context of Tamil, the need for sentiment analysis models is particularly crucial due to its status as one of the classical languages spoken by millions. The cultural, social, and historical nuances embedded in Tamil language usage require tailored sentiment analysis approaches that can capture the subtleties of sentiment expression. This paper introduces a novel method that assesses the performance of various text embedding methods in conjunction with a range of machine learning (ML) algorithms to enhance sentiment classification for Tamil text, with a specific focus on lyrics. Experiments notably emphasize FastText word embedding as the most effective method, showcasing superior results with a remarkable 78% accuracy when coupled with the support vector classification (SVC) model.
Volume: 14
Issue: 3
Page: 941-949
Publish at: 2025-12-01

Shellcode classification analysis with binary classification-based machine learning

10.11591/ijict.v14i3.pp923-932
Jaka Naufal Semendawai , Deris Stiawan , Iwan Pahendra Anto Saputra , Mohamed Shenify , Rahmat Budiarto
The internet enables people to connect through their devices. While it offers numerous benefits, it also has adverse effects. A prime example is malware, which can damage or even destroy a device or harm its users, highlighting the importance of cyber security. Various methods can be employed to prevent or detect malware, including machine learning techniques. The experiments are based on training and testing data from the UNSW_NB15 dataset. K-nearest neighbor (KNN), decision tree, and Naïve Bayes classifiers determine whether a record in the test data represents a Shellcode attack or a non-Shellcode attack. The KNN, decision tree, and Naïve Bayes classifiers reached accuracy rates of 96.26%, 97.19%, and 57.57%, respectively. This study's findings aim to offer valuable insights into the application of machine learning to detect or classify malware and other forms of cyberattacks.
Volume: 14
Issue: 3
Page: 923-932
Publish at: 2025-12-01

Nonlinear backstepping and model predictive control for grid-connected permanent magnet synchronous generator wind turbines

10.11591/ijece.v15i6.pp5091-5105
Adil El Kassoumi , Mohamed Lamhamdi , Ahmed Mouhsen , Mohammed Fdaili , Imad Aboudrar , Azeddine Mouhsen
This research investigates and compares two nonlinear current-control strategies, backstepping control (BSC) and finite control set model predictive control (FCS-MPC) for machine-side and grid-side converters in grid-connected direct-drive permanent magnet synchronous generator (DD-PMSG) wind turbines. Addressing the control challenges in wind energy systems with varying speeds, the study aims to determine which strategy offers superior performance under identical operating conditions. The nonlinear BSC regulates stator and grid currents using Lyapunov-based techniques, while FCS-MPC leverages model predictions to select optimal switching states based on a cost function. A comprehensive simulation using MATLAB/Simulink is conducted, analyzing each controller’s transient behavior, steady-state response, torque ripple, and power quality total harmonic distortion (THD). Results show that FCS-MPC achieves faster convergence, lower overshoot, and superior power quality compared to BSC, though it requires higher computational resources. Statistical validation supports the robustness of FCS-MPC under parameter uncertainties. This work contributes a structured comparison of advanced nonlinear strategies for PMSG-based wind turbines and provides a foundation for future implementations in real-time embedded control systems. Future directions include experimental validation and hybrid model predictive controller- artificial intelligence (MPC-AI) control frameworks.
Volume: 15
Issue: 6
Page: 5091-5105
Publish at: 2025-12-01

Improving electrical load forecasting by integrating a weighted forecast model with the artificial bee colony algorithm

10.11591/ijece.v15i6.pp5854-5862
Ani Shabri , Ruhaidah Samsudin
Nonlinear and seasonal fluctuations present significant challenges in predicting electricity load. To address this, a combination weighted forecast model (CWFM) based on individual prediction models is proposed. The artificial bee colony (ABC) algorithm is used to optimize the weighted coefficients. To evaluate the model’s performance, the novel CWFM and three benchmark models are applied to forecast electricity load in Malaysia and Thailand. Performance is assessed using mean absolute percentage error (MAPE) and root mean square error (RMSE). The experimental results indicate that the proposed combined model outperforms the single models, demonstrating improved accuracy and better capturing seasonal variations in electricity load. The ABC algorithm helps in finding the optimal combination of weights, ensuring that the model adapts effectively to different forecasting scenarios.
Volume: 15
Issue: 6
Page: 5854-5862
Publish at: 2025-12-01

Fractional fuzzy based static var compensator control for damping enhancement of inter-area oscillations

10.11591/ijece.v15i6.pp5130-5143
Tarik Zabaiou , Khadidja Benayad
Over time, the insertion of flexible alternating current transmission system (FACTS) components in the power grid became primordial to maintain the overall system stability. This paper proposed an innovative approach called hybrid auxiliary damping control based wide-area measurements for the static var compensator (SVC). The presented controller is a fractional-order fuzzy proportional integral derivative (FOFPID). Its principal task is to damp inter-area low frequency oscillations (LFOs) and to improve the power system stability over the transient dynamics. Then, a metaheuristic grey wolf optimization (GWO) method is applied to adjust the controller’s gains. The SVC-based FOFPID control scheme is implemented in a two-area four- machine test system employing the rotor speed deviations of generators as input signal. A comparative analysis of the elaborated controller with the integer PID and the fractional-order PID (FOPID) is performed to emphasize its effectiveness under a three-phase perturbation. Furthermore, a load variation effect test is completed to attest the control strategy robustness. Based on dynamic simulation results and performance indices, the suggested controller shows its robustness and provides increased efficiency for inter- area oscillations damping.
Volume: 15
Issue: 6
Page: 5130-5143
Publish at: 2025-12-01

Optimized passive and active shielding of magnetic induction generated by ultra-high-voltage overhead power lines

10.11591/ijece.v15i6.pp5144-5161
Salah-Eddine Houicher , Rabah Djekidel , Sid Ahmed Bessidek
This paper presents computational modeling to assess and limit the magnetic induction levels emitted by an extra-high-voltage (EHV) overhead transmission line of 750 kV using the fundamental principle of Biot-Savart law in magnetostatics. An optimization technique based on the grey wolf optimizer (GWO) algorithm is employed to determine the appropriate location of the passive and active loop conductors, and the associated parameters to shielding to achieve better compensation of magnetic induction in an interest zone. The resulting magnetic induction of the ultra high voltage (UHV) overhead power line exhibits a crest value of 27.78 μT at the middle of the right-of-way, which can be considered unacceptable by strict protection standards. Generally, the magnetic compensation loops optimally located under the phase conductors of the power transmission system reduce the magnetic induction levels along the transmission line corridor. The passive loop attenuates the maximum magnetic induction by a rate of 29.7%. Therefore, the performance of the active loop is better; it provides a greater reduction with a rate reaching 53.24%. The simulation results were tested with those derived by the elliptical polarization process. An excellent concordance was found, which made it possible to ensure the adopted method.
Volume: 15
Issue: 6
Page: 5144-5161
Publish at: 2025-12-01

The evolution of routing in VANET: an analysis of solutions based on artificial intelligence and software-defined networks

10.11591/ijece.v15i6.pp5388-5400
Lewys Correa Sánchez , Octavio José Salcedo Parra , Jorge Gómez
This study explored the evolution of vehicular ad hoc networks (VANET) and focused on the challenges and opportunities for routing in these dynamic environments. Despite advancements in traditional protocols, a significant gap persists in the ability to adapt to highly mobile environments with variable traffic, which limits routing efficiency and quality of service. Emerging technologies, such as artificial intelligence (AI) and software- defined networks (SDN), are discussed that have the potential to revolutionize the management of VANET. Machine learning can be used to predict traffic, optimize routes, and adapt routing protocols in real-time. Furthermore, SDN can simplify routing management and enable greater flexibility in network configurations. A comprehensive overview of the convergence of AI and SDN is presented, and the potential complementarities between these technologies to address routing challenges in VANET are explored. Finally, the implications of efficient routing in VANET for road safety, traffic management, and the development of new applications are discussed, and future research lines are identified to address challenges such as scalability, data security, and computational efficiency in vehicular environments.
Volume: 15
Issue: 6
Page: 5388-5400
Publish at: 2025-12-01

Solar-powered boost-fly back converter for efficient warehouse monitoring with flack droid

10.11591/ijict.v14i3.pp802-810
S. Sivajothi Kavitha , D. Usha , V. Jamuna
Warehouses serve as essential infrastructure for storing a wide array of goods and are utilized by various entities. Implementing a sophisticated warehouse management system (WMS) represents a pinnacle of technological advancement. Effective warehouse maintenance is paramount, benefiting both consumers and producers alike. Typically, warehouses store items such as medicine, chemicals, food, and electronics, requiring controlled conditions of temperature and humidity. Monitoring these factors is essential to comply with regulations and maintain internal quality standards. This paper focuses on optimizing warehouse management to meet customer demands and streamline processes for packaging and production teams. Additionally, it proposes the integration of droid technology within warehouses to monitor the parameters and mitigate fire hazards, thereby enhancing the efficiency and safety of goods storage. This proactive approach not only ensures the integrity of stored products but also contributes to cost-saving measures within the warehouse. This paper introduces an innovative method to achieve a substantial increase in voltage output in a DC-DC converter while avoiding the need for excessively high duty ratios. The converter’s operation is governed by a single pulse width modulation (PWM) signal, employing a fractional-order proportional-integral-derivative controller (FOPID) for regulating the power switch. By merging boost-forward-fly back (BFF) converter topologies, the design achieves a remarkable voltage gain. Moreover, the converter efficiently recycles energy stored in the leakage inductance of the coupled inductor, thereby reducing voltage stress and minimizing power losses and thus enhancing overall converter efficiency.
Volume: 14
Issue: 3
Page: 802-810
Publish at: 2025-12-01
Show 4 of 1907

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration