Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

29,196 Article Results

Accessibility in e-government portals: a systematic mapping study

10.11591/ijece.v16i1.pp357-372
Mohammed Rida Ouaziz , Laila Cheikhi , Ali Idri , Alain Abran
In recent years, several researchers have investigated the challenges of accessibility in e-government portals and have contributed to many proposals for improvements. However, no comprehensive review has been conducted on this topic. This study aimed to survey and synthesize the published work on the accessibility of e-government portals for people with disabilities. We carried out a review using a systematic mapping study (SMS) to compile previous findings and provide comprehensive state-of-the-art. The SMS collected studies published between January 2000 and March 2025 were identified using an automated search in five known databases. In total, 112 primary studies were selected. The results showed a notable increase in interest and research activities related to accessibility in e-government portals. Journals are the most widely used publication channel; studies have mainly focused on evaluation research and show a commitment to inclusivity. “AChecker” and “Wave validator” are the most used accessibility evaluation tools. The findings also identified various accessibility guidelines, with the most frequently referenced being the web content accessibility guidelines (WCAG). Based on this study, several key implications emerge for researchers, and addressing them would be beneficial for researchers to advance e-government website accessibility in a meaningful way.
Volume: 16
Issue: 1
Page: 357-372
Publish at: 2026-02-01

An information retrieval system for Indian legal documents

10.11591/ijece.v16i1.pp246-255
Rasmi Rani Dhala , A V S Pavan Kumar , Soumya Priyadarsini Panda
In this work, a legal document retrieval system is presented that estimates the significance of the user queries to appropriate legal sub-domains and extracts the key documents containing required information quickly. In order to develop such a system, a document repository is prepared comprising the documents and case study reports of different Indian legal matters of last five years. A legal sub-domain classification technique using deep neural network (DNN) model is used to obtain the relevance of the user queries with respective legal sub-domains for quick information retrieval. A query-document relevance (QDR) score-based technique is presented to rank the output documents in relation to the query terms. The presented model is evaluated by performing several experiments under different context and the performance of the presented model is analyzed. The presented model achieves an average precision score of 0.98 and recall score of 0.97 in the experiments performed. The retrieval model is assessed with other retrieval models and the presented model achieves 13% and 12% increase average accuracy with respect to precision scores and recall measures respectively compared to the traditional models showing the strength of the presented model.
Volume: 16
Issue: 1
Page: 246-255
Publish at: 2026-02-01

Application of deep learning and machine learning techniques for the detection of misleading health reports

10.11591/ijece.v16i1.pp373-382
Ravindra Babu Jaladanki , Garapati Satyanarayana Murthy , Venu Gopal Gaddam , Chippada Nagamani , Janjhyam Venkata Naga Ramesh , Ramesh Eluri
In the current era of vast information availability, the dissemination of misleading health information poses a considerable obstacle, jeopardizing public health and overall well-being. To tackle this challenge, experts have utilized artificial intelligence methods, especially machine learning (ML) and deep learning (DL), to create automated systems that can identify misleading health-related information. This study thoroughly investigates ML and DL techniques for detecting fraudulent health news. The analysis delves into distinct methodologies, exploring their unique approaches, metrics, and challenges. This study explores various techniques utilized in feature engineering, model architecture, and evaluation metrics within the realms of machine learning and deep learning methodologies. Additionally, we analyze the consequences of our results on enhancing the efficacy of systems designed to detect counterfeit health news and propose possible avenues for future investigation in this vital area.
Volume: 16
Issue: 1
Page: 373-382
Publish at: 2026-02-01

Artificial intelligence of things solution for Spirulina cultivation control

10.11591/ijece.v16i1.pp488-504
Abdelkarim Elbaati , Mariem Kobbi , Jihene Afli , Abdelrahim Chiha , Riadh Haj Amor , Bilel Neji , Taha Beyrouthy , Youssef Krichen , Adel M. Alimi
In the evolving field of Spirulina cultivation, the integration of the internet of things (IoT) has facilitated the optimization of spirulina growth and significantly enhanced biomass yield in the culture medium. This study outlines a control open-pond system for Spirulina cultivation that employs generative artificial intelligence (AI) and edge computing within an IoT framework. This transformative approach maintains optimal conditions and automates tasks traditionally managed through labor-intensive manual processes. The system is designed to detect, acquire, and monitor basin data via electronic devices, which is then analyzed by a large language model (LLM) to generate precise, context-aware recommendations based on domain-specific knowledge. The final output comprises SMS notifications sent to the farm manager, containing the generated recommendations, which keep them informed and enable timely intervention when necessary. To ensure continued autonomous operation in case of connectivity loss, pre-trained TinyML models were integrated into the Raspberry Pi. These models display alarm signals to alert the farm owner to any irregularities, thereby maintaining system stability and performance. This system has substantially improved the growth rate, biomass yield, and nutrient content of Spirulina. The results highlight the potential of this system to transform Spirulina cultivation by offering an adaptable, autonomous solution.
Volume: 16
Issue: 1
Page: 488-504
Publish at: 2026-02-01

Internet of things heatstroke detection device

10.11591/ijece.v16i1.pp535-544
Swati Patil , Rugved Ravindra Kulkarni , Karishma Prashant Salunkhe , Vidit Pravin Agrawal
The increasing frequency and intensity of heat waves due to climate change underscore the critical need for proactive measures to prevent heat stroke, a life-threatening condition affecting individuals of all demographics, with vulnerability among the elderly and outdoor workers. In response to this pressing public health challenge, we present the internet of things (IoT) based heat stroke prevention device, a comprehensive solution leveraging a suite of sensors including temperature, atmospheric, pulse rate, blood pressure, and gyroscope sensors, seamlessly integrated with an ESP32 microcontroller and Firebase's real-time database. Central to the device's functionality is a random forest classifier machine learning model, trained on historical data and user-specific parameters, to accurately predict the likelihood of heat stroke onset in real-time. Rigorous testing and validation procedures demonstrate the device's high accuracy and reliability in sensor measurements, data transmission, and model performance. The accompanying web-based dashboard provides users with intuitive access to their current health metrics, including temperature, humidity, blood pressure, pulse rate, and personalized predictions for heat stroke risk. This innovative device serves as a versatile tool for public health agencies, occupational safety programs, and individuals seeking to safeguard their well-being in the face of escalating temperatures and climate uncertainties.
Volume: 16
Issue: 1
Page: 535-544
Publish at: 2026-02-01

Hybrid neurocontrol of irrigation of field agricultural crops

10.11591/ijece.v16i1.pp206-215
Aleksandr S. Kabildjanov , Aziz M. Usmanov , Dilnoza B. Yadgarova
This study investigates a conceptual framework for a hybrid intelligent control system designed to optimize the irrigation practice for field crops via fertigation technologies. This research is aimed at enhancing irrigation management through the improvement of the prediction, optimization, and regulation processes. This is achieved through the incorporation of modern computational intelligence with advanced deep learning based neural networks, evolutionary optimization algorithms, and the adaptive neuro-fuzzy technique. This hybrid control framework is made up of interconnected sets of monitoring and decision-making modules. These include subsystems for evaluation of soil conditions, monitoring of plant growth and physiological development, assessment of environmental and climatic conditions, and measurements of the intensity of solar radiation. Additional systems address the preparation of the fertigation mixture and control of intelligent decision-making processes. For this system, the overall control policy is rendered through a predictive neurocontrol approach with execution on a computer platform. A recurrent deep neural model, long short-term memory (LSTM) type, provides crop growth and development parameter predictions through the ability to explore temporal dependencies in agricultural processes. Optimization in the predictive control feedback is accomplished through genetic algorithms in an adaptive manner.
Volume: 16
Issue: 1
Page: 206-215
Publish at: 2026-02-01

An enhanced improved adaptive backstepping–second-order sliding mode hybrid control strategy for high-performance electric vehicle drives

10.11591/ijece.v16i1.pp121-134
Huu Dat Tran , Ngoc Thuy Pham
This paper proposes an enhanced hybrid speed control strategy, termed improved adaptive backstepping–second-order sliding mode (IABSSOSM), for six-phase induction motor (SPIM) drives in electric vehicle (EV) propulsion systems. The proposed method combines the systematic design framework of Backstepping in the outer speed and flux loops with a second-order sliding mode controller in the inner current loop. An innovation of the approach is the integration of a variable-gain super-twisting algorithm (VGSTA), which dynamically adjusts the control effort based on disturbance levels, thereby minimizing chattering and enhancing robustness against system uncertainties. To further improve disturbance rejection, a predictive torque estimator is incorporated using a forward Euler discretization, enabling accurate torque prediction and proactive compensation. This hybrid structure significantly improves convergence speed, enhances reference speed tracking accuracy, and ensures fast and precise torque response, and its strong resilience to external load disturbances, system parameter variations enable stable and reliable operation under challenging conditions. The effectiveness of the proposed approach is validated through comprehensive simulations using the MATLAB/Simulink.
Volume: 16
Issue: 1
Page: 121-134
Publish at: 2026-02-01

Evaluating plant growth performance in a greenhouse hydroponic salad system using the internet of things

10.11591/ijece.v16i1.pp505-517
Chonthisa Rattanachu , Wiyuda Phetjirachotkul , Isara Chaopisit , Kronsirinut Rothjanawan
Hydroponic salad cultivation is becoming increasingly popular. However, a common challenge is the lack of time to maintain hydroponic vegetables due to other responsibilities. This study presents a hydroponic system based on the internet of things (IoT) technique, designed to save time by enabling remote control through a mobile application connected to a NodeMCU microcontroller. Various sensors are integrated with the NodeMCU for real-time monitoring and automation. The study also explores the use of RGB LEDs, which significantly accelerated plant growth and reduced cultivation time. A comparative experimental design was employed to evaluate the growth rate of green oak salad vegetables under two different greenhouse systems. The primary factor compared was the greenhouse system type, with plant growth rate as the outcome variable. Each treatment was replicated 10 times. F-tests were used to statistically determine significant differences in growth rates between the two systems across measured intervals. Results showed that the automated greenhouse system produced the highest leaf width and plant weight values. The use of RGB LEDs reduced the cultivation period from 45 days to 30 days, enabling more planting cycles and ultimately increasing overall yield.
Volume: 16
Issue: 1
Page: 505-517
Publish at: 2026-02-01

Parameter-efficient fine-tuning of small language models for code generation: a comparative study of Gemma, Qwen 2.5 and Llama 3.2

10.11591/ijece.v16i1.pp278-287
Van-Viet Nguyen , The-Vinh Nguyen , Huu-Khanh Nguyen , Duc-Quang Vu
Large language models (LLMs) have demonstrated impressive capabilities in code generation; however, their high computational demands, privacy limitations, and challenges in edge deployment restrict their practical use in domain-specific applications. This study explores the effectiveness of parameter efficient fine-tuning for small language models (SLMs) with fewer than 3 billion parameters. We adopt a hybrid approach that combines low-rank adaptation (LoRA) and 4-bit quantization (QLoRA) to reduce fine-tuning costs while preserving semantic consistency. Experiments on the CodeAlpaca-20k dataset reveal that SLMs fine-tuned with this method outperform larger baseline models, including Phi-3 Mini 4K base, in ROUGE-L. Notably, applying our approach to the LLaMA 3 3B and Qwen2.5 3B models yielded performance improvements of 54% and 55%, respectively, over untuned counterparts. We evaluate models developed by major artificial intelligence (AI) providers Google (Gemma 2B), Meta (LLaMA 3 1B/3B), and Alibaba (Qwen2.5 1.5B/3B) and show that parameter-efficient fine-tuning enables them to serve as cost-effective, high-performing alternatives to larger LLMs. These findings highlight the potential of SLMs as scalable solutions for domain-specific software engineering tasks, supporting broader adoption and democratization of neural code synthesis.
Volume: 16
Issue: 1
Page: 278-287
Publish at: 2026-02-01

Deep learning architecture for detection of fetal heart anomalies

10.11591/ijece.v16i1.pp414-422
Nusrat Jawed Iqbal Ansari , Maniroja M. Edinburgh , Nikita Nikita
Research has demonstrated that artificial intelligence (AI) techniques have shown tremendous potential over the past decade for analyzing and detecting anomalies in the fetal heart during ultrasound tests. Despite their potential, the adoption of these algorithms remains limited due to concerns over patient privacy, the scarcity of large well-annotated datasets and challenges in achieving high accuracy. This research aims to overcome these limitations by proposing an optimal solution. Two methods such as deterministic image augmentation techniques and Wasserstein generative adversarial network with gradient penalty (WGAN-GP) showcase the framework's capacity to seamlessly and effectively expand original datasets to 14 times and 17 times respectively, thereby effectively tackling the problem of data scarcity. It uses an annotation tool to precisely categorize anomalies identified in the echocardiogram dataset. Segmentation of the annotated data is done to highlight region of interest. Nine distinct fetal heart anomalies are identified with respect to the fewer covered in existing research. This study also investigates the state-of-the-art architectures and optimization techniques used in deep learning models. The results clearly indicate that the ResNet-101 model demonstrated superior precision accuracy of 99.15%. To ensure the reliability of the proposed model, its performance underwent thorough evaluation and validation by certified gynecologists and fetal medicine specialists.
Volume: 16
Issue: 1
Page: 414-422
Publish at: 2026-02-01

Autonomous mobile robot implementation for final assembly material delivery system

10.11591/ijece.v16i1.pp158-173
Ahmad Riyad Firdaus , Imam Sholihuddin , Fania Putri Hutasoit , Agus Naba , Ika Karlina Laila Nur Suciningtyas
This study presents the development and implementation of an autonomous mobile robot (AMR) system for material delivery in a final assembly environment. The AMR replaces conventional transport methods by autonomously moving trolleys between the warehouse, production stations, and recycling areas, thereby reducing human intervention in repetitive logistics tasks. The proposed system integrates a laser-SLAM navigation approach, customized trolley design, RoboShop programming, and robot dispatch system coordination, enabling real-time route planning, obstacle detection, and material scheduling. Experimental validation demonstrated high accuracy in path following, with root mean square error values ranging between 0.001 to 0.020 meters. The AMR achieved an average travel distance of 118.81 meters and a cycle time of 566.90 seconds across three final assembly stations. The overall efficiency reached 57%, primarily due to reduced idle time and optimized material replenishment. These results confirm the feasibility of AMR deployment as a scalable and flexible intralogistics solution, supporting the transition toward Industry 4.0 smart manufacturing systems.
Volume: 16
Issue: 1
Page: 158-173
Publish at: 2026-02-01

Credit card fraud data analysis using proposed sampling algorithm and deep ensemble learning

10.11591/ijece.v16i1.pp311-320
Aye Aye Khine , Zin Thu Thu Myint
Credit card fraud detection is challenging due to the severe imbalance between legitimate and fraudulent transactions, which hinders accurate fraud identification. To address this, we propose a deep learning-based ensemble model integrated with a proposed sampling algorithm based on random oversampling. Unlike traditional methods, the proposed sampling algorithm addresses the oversight of parameter selection and manages class imbalance without eliminating any legitimate samples. The ensemble framework combines the strengths of convolutional neural networks (CNN) for spatial feature extraction, long short-term memory (LSTM) networks for capturing sequential patterns, and multilayer perceptrons (MLP) for efficient classification. Three ensemble strategies—Weighted average, unweighted average, and unweighted majority voting—are employed to aggregate predictions. Experimental results show that all ensemble methods achieve perfect scores (1.00) in precision, recall, and F1-score for both fraud and non-fraud classes. This study demonstrates the effectiveness of ensemble model with optimized sampling approach for robust and accurate fraud detection.
Volume: 16
Issue: 1
Page: 311-320
Publish at: 2026-02-01

Optimal investment framework of static VAr compensators in distribution system based on life cycle cost

10.11591/ijece.v16i1.pp76-88
Nguyen Hien Trung , Vu Van Thang
The distribution system planning and operating present significant challenges due to low voltage, high impedance, and large load density, which lead to substantial power losses and low voltage quality. To address this challenge, the paper proposes an optimal framework for the simultaneous determination of the placement and sizing of static VAr compensators (SVCs) in DSs. The proposed model is formulated as an optimization problem that minimizes the life cycle cost, while accounting for the varying lifespans and investment times of SVCs. The framework incorporates hourly load variation and employs full alternating current (AC) power flow analysis to improve the accuracy of results. Additionally, it considers the dependency of the reactive power injected by SVCs on the DSs and incorporates the discrete rated capacities of SVCs to ensure practical feasibility and enhance the accuracy of compensation power, effect of DSs. The proposed approach is validated using a modified 33-bus IEEE test system implemented in the general algebraic modeling system (GAMS). Numerical results from multiple case studies confirm the feasibility and high performance of the proposed model.
Volume: 16
Issue: 1
Page: 76-88
Publish at: 2026-02-01

Stochastic planning of multi-bus hydrothermal systems using the scenario tree technique

10.11591/ijece.v16i1.pp49-64
Martha Patricia Camargo-Martínez , Ricardo Rincón Ballesteros , Fabian Salazar-Caceres , Andrés F. Panesso H. , Harrynson Ramírez-Murillo , Osvaldo Añó
Hydrothermal operation planning (HTOP) is a complex, large-scale optimal control problem. Traditionally, mathematical programming is used to solve it; however, metaheuristic techniques have emerged as an alternative approach. However, even in the context of current technological developments, the models developed to date generally require simplifications in the formulation. In particular, in medium-term planning, they have used a deterministic model or simplified transmission lines into a single bus. However, this approach leads to conservative and unrealistic solutions that may result in either oversizing or underutilization of resources. Therefore, this work proposes a methodology for incorporating uncertainties into the HTOP problem with a multi-bus topology. It was tested in a three-bus system, where linear functions are applied to simplify the production of hydroelectric plants and the cost of thermal units. The methodology incorporated well-established techniques in an implicit stochastic optimization (ISO) model, using a tree of 50 scenarios to model the hydrological series, which is solved with linear programming (LP). The results were validated with the costs of the 10000 generated series, showing an error of 5.07%. Additionally, the solutions were compared with an adapted metaheuristic technique for this problem to explore models applicable to more complex formulations.
Volume: 16
Issue: 1
Page: 49-64
Publish at: 2026-02-01

Tiny machine learning with convolutional neural network for intelligent radiation monitoring in nuclear installation

10.11591/ijece.v16i1.pp404-413
Istofa Istofa , Gina Kusuma , Firliyani Rahmatia Ningsih , Joko Triyanto , I Putu Susila , Atang Susila
This study focuses on developing an intelligent radiation monitoring system capable of operating on a low-power single-board computer (Raspberry Pi) for deployment in remote monitoring stations within nuclear facility environments. The proposed system utilizes a radionuclide identification method based on tiny machine learning (TinyML) with a convolutional neural network (CNN) architecture. The radionuclide dataset was acquired through measurements of standard radiation sources, with variations in distance, exposure time, and combinations of multiple sources-including Cs-137, Co-60, Cs-134, and Eu-152. The radiation intensity data from detector measurements were structured into a response matrix and subsequently converted into a grayscale image dataset for model training. Keras is used to design and train machine learning models, while Tensor Flow Lite is used to model size reduction. Experimental results demonstrate that the developed model achieves an accuracy of 99.338% for Keras model trained on computer and 84.568% after deployment on the Raspberry Pi. Furthermore, this study successfully designed and embedded the TinyML model into an environment radiation monitoring system at the PUSPIPTEK nuclear installation.
Volume: 16
Issue: 1
Page: 404-413
Publish at: 2026-02-01
Show 4 of 1947

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration