Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,451 Article Results

Deep transfer learning for classification of ECG signals and lip images in multimodal biometric authentication systems

10.11591/ijai.v14.i4.pp3160-3171
Latha Krishnamoorthy , Ammasandra Sadashivaiah Raju
Authentication plays an essential role in diverse kinds of application that requires security. Several authentication methods have been developed, but biometric authentication has gained huge attention from the research community and industries due to its reliability and robustness. This study investigates multimodal authentication techniques utilizing electrocardiogram (ECG) signals and face lip images. Leveraging transfer learning from pre-trained ResNet and VGG16 models, ECG signals and photos of the lip area of the face are used to extract characteristics. Subsequently, a convolutional neural network (CNN) classifier is employed for classification based on the extracted features. The dataset used in this study comprises ECG signals and face lip images, representing distinct biometric modalities. Through the integration of transfer learning and CNN classification, improving the reliability and precision of multimodal authentication systems is the primary objective of the study. Verification results show that the suggested method is successful in producing trustworthy authentication using multimodal biometric traits. The experimental analysis shows that the proposed deep transfer learning-based model has reported the average accuracy, F1-score, precision, and recall as 0.962, 0.970, 0.965, and 0.966, respectively.
Volume: 14
Issue: 4
Page: 3160-3171
Publish at: 2025-08-01

Revolutionizing autism diagnosis using hybrid model for autism spectrum disorder phenotyping

10.11591/ijece.v15i4.pp3904-3912
Vijayalaxmi N. Rathod , Rayangouda H. Goudar
The growing prevalence of autism spectrum disorder (ASD) necessitates efficient data-driven screening solutions to complement traditional diagnostic methods, which often suffer from subjectivity and limited scalability. This study introduces a hybrid ensemble model combining logistic regression (LR) and naive Bayes (NB) for ASD classification across four age groups (toddlers, children, adolescents, and adults) using behavioral screening datasets. By integrating statistical learning and probabilistic inference, the proposed model effectively captured behavioral markers, ensuring a higher classification accuracy and improved generalization. The experimental evaluation demonstrated its superior performance, achieving 94.24% accuracy and 99.40% area under the receiver operating characteristic curve (AUROC), surpassing those of individual classifiers and existing approaches. This artificial intelligence (AI)-driven framework offers a scalable, cost-effective, and accessible solution for both clinical and telemedicine-based ASD screening, facilitating early intervention and risk assessment. This study underscores the transformative potential of AI in neurodevelopmental diagnostics, paving the way for more efficient and widely deployable autistic screening technologies.
Volume: 15
Issue: 4
Page: 3904-3912
Publish at: 2025-08-01

Integrating time-frequency features with deep learning for lung sound classification

10.11591/ijece.v15i4.pp3737-3747
Su Yuan Chang , Marni Azira Markom , Zhi Sheng Choong , Arni Munira Markom , Latifah Munirah Kamaruddin , Erdy Sulino Mohd Muslim Tan
Deep learning has transformed medical diagnostics, especially in analyzing lung sounds to assess respiratory conditions. Traditional methods like CT scans and X-rays are impractical in resource-limited settings due to radiation exposure and time consumption, while conventional stethoscopes often lead to misdiagnosis due to subjective interpretation and environmental noise. This study evaluates deep learning models for lung sound classification using the International Conference on Biomedical Health Informatics 2017 dataset, comprising 920 annotated samples from 126 subjects. Pre-processing includes down sampling, segmentation, normalization, and audio clipping, with feature extraction techniques like spectrogram and Mel-frequency cepstral coefficients (MFCC). The adopted automatic lung sound diagnosis network (ASLD-Net) model with triple feature input (time domain, spectrogram, and MFCC) achieved the highest accuracy at 97.25%, followed by the dual feature model (spectrogram and MFCC) at 95.65%. Single-input models with spectrogram and MFCC performed well, while the time domain input alone had the lowest accuracy.
Volume: 15
Issue: 4
Page: 3737-3747
Publish at: 2025-08-01

A deep learning-based framework for automatic detection of COVID-19 using chest X-ray and CT-scan images

10.11591/ijai.v14.i4.pp3192-3200
Sivanagireddy Kalli , Bukka Narendra Kumar , Saggurthi Jagadeesh , Kushagari Chandramouli Ravi Kumar
COVID-19 has profoundly impacted global public health, underscoring the need for rapid detection methods. Radiography and radiologic imaging, especially chest X-rays, enable swift diagnosis of infected individuals. This study delves into leveraging machine learning to identify COVID-19 from X-ray images. By gathering a dataset of 9,000 chest X-rays and CT scans from public resources, meticulously vetted by board-licensed radiologists to confirm COVID-19 presence, the research sets a robust foundation. However, further validation is essential expanding datasets to encompass enough COVID-19 cases enhances convolutional neural network (CNN) accuracy. Among various machine learning techniques, deep learning excels in identifying distinct patterns on imaging characteristics discernible in chest radiographs of COVID-19 patients. Yet, extensive validation across diverse datasets and clinical trials is crucial to ensure the robustness and generalizability of these models. The conversation extends into complexities, including ethical considerations around patient privacy and integrating intelligent tech into clinical workflows. Collaborating closely with healthcare professionals ensures this technology complements the established diagnostic approach. Despite the potential to detect COVID-19 using chest X-ray imaging findings, thorough research and validation, alongside ethical deliberations, are vital before implementing it in the healthcare field. The results show that the proposed model achieved classification accuracy and F1 score of 96% and 98%, respectively, for the X-ray images.
Volume: 14
Issue: 4
Page: 3192-3200
Publish at: 2025-08-01

Unpacking the drivers of artificial intelligence regulation: driving forces and critical controls in artificial intelligence governance

10.11591/ijai.v14.i4.pp2655-2666
Ibrahim Atoum , Salahiddin Altahat
The burgeoning field of artificial intelligence (AI) necessitates a nuanced approach to governance that integrates technological advancement, ethical considerations, and regulatory oversight. As various AI governance frameworks emerge, a fragmented landscape hinders effective implementation. This article examines the driving forces behind AI regulation and the essential control mechanisms that underpin these frameworks. We analyze market-driven, state-driven, and rights-driven regulatory approaches, focusing on their underlying motivations. Furthermore, critical regulatory controls such as data governance, risk management, and human oversight are highlighted to demonstrate their roles in establishing effective governance structures. Additionally, the importance of international cooperation and stakeholder collaboration in addressing the challenges posed by rapid technological change is emphasized. By providing insights into the strengths, weaknesses, and potential synergies of different governance models, this study contributes to the development of equitable and effective AI regulatory frameworks that encourage innovation while safeguarding societal interests. Ultimately, the findings aim to inform policymakers, industry leaders, and civil society organizations in their efforts to foster a future where AI is utilized responsibly and equitably for the betterment of humanity.
Volume: 14
Issue: 4
Page: 2655-2666
Publish at: 2025-08-01

Optimizing convolutional neural network hyperparameters to enhance liver segmentation accuracy in medical imaging

10.11591/ijece.v15i4.pp3876-3887
Iwan Purnama , Agus Perdana Windarto , Solikhun Solikhun
Liver segmentation in medical imaging is a crucial step in various clinical applications, such as disease diagnosis, surgical planning, and evaluation of response to therapy, which require a high degree of precision for accurate results. This research focuses on increasing the accuracy of liver segmentation by optimizing hyperparameters in the convolutional neural network (CNN) model using the developed ResNet architecture. The uniqueness of this research lies in the application of hyperparameter optimization methods such as random search and Bayesian optimization, which allow broader and more efficient exploration than conventional approaches. The results show that the DeepLabV3Plus model (the proposed model) significantly outperforms the standard ResNet in the image segmentation task. DeepLabV3Plus shows excellent performance with an MIoU score of 0.965, a PA Score of 0.929, and a meager loss value of 0.011. These results show that DeepLabV3Plus is able to recognize and predict segmentation areas very accurately and consistently and minimize prediction errors effectively. In conclusion, the results of this study show a significant improvement in segmentation accuracy, with the optimized model providing better performance in the evaluation.
Volume: 15
Issue: 4
Page: 3876-3887
Publish at: 2025-08-01

Blockchain as a digital governance tool: A systematic review

10.11591/ijece.v15i4.pp3986-3995
Cesar Patricio-Peralta , Jimmy Ramirez Villacorta , Milton Amache Sánchez , Jacker Paredes Meneses , Jesús Zamora Mondragon , Luis Segura Terrones , Paul Torres Santos , César Veliz Manrique , Walter Patricio Peralta
This systematic review explores the implementation of blockchain technology as a digital governance tool, focusing specifically on the Peruvian context. In the digital transformation era, blockchain has established itself as an innovative solution to manage and authenticate information. This research focuses on optimizing administrative and governmental processes in Peru, a country where document verification is crucial in legal, financial, educational, and medical procedures. The methodology used follows the problem/population, intervention, comparison, outcome, context (PICOC) model. 56 high-impact articles were selected in Scopus, prioritizing those in the areas of engineering, computer science, and business, and published between 2022 and 2025. The objective was to define the scope and structure of the research questions. These questions address the implementation of blockchain and its applications in digital governance to ensure security and reliability in administrative procedures. Through a comprehensive literature review, we seek to provide a comprehensive view of how blockchain could transform the interaction between citizens and the Peruvian government by automating document verification. In addition, successful cases from other countries and similar sectors will be analyzed, evaluating their feasibility and applicability in the Peruvian context. This approach will allow us to identify both the potential benefits and the challenges and implications associated with the integration of blockchain into government processes in Perú.
Volume: 15
Issue: 4
Page: 3986-3995
Publish at: 2025-08-01

Evaluation of the dynamic performance and practical limitations of a two-wheeled self-balancing robot

10.11591/ijece.v15i4.pp3613-3620
Rupasinghe Arachchige Don Dhanushka Dharmasiri , Malagalage Kithsiri Jayananda
Two-wheeled self-balancing robots (TWSBR) are statically unstable. However, using closed-loop controllers can stabilize. In this work, the proportional-integral-derivative (PID) controller was designed to maintain the TWSBR stability by adding two zeros and a pole at the origin to the loop gain and by determining the parameter K via root-locus analysis. Then using the K value Kp, Ki, and Kd parameters were calculated. By applying an impulse response to the system, it was found that the system is able to reach a dynamic balance in less than 1.2 seconds with minimum steady-state error. The dynamic performance and limitations of the developed system were investigated. The highest disturbance angle that can be applied to the system while keeping the motor input voltage below 12 V, in order to create counterbalancing torque and achieve dynamic balance, is determined to be θ = 0.0524 rad. Additionally, it was found that the TWSBR system managed to retain stability in a significantly large range of sudden payload changes with the same PID controller.
Volume: 15
Issue: 4
Page: 3613-3620
Publish at: 2025-08-01

Navigating cyber investigations: strategies and tools for forensic data acquisition

10.11591/ijece.v15i4.pp4022-4030
Srinivas Kanakala , Vempaty Prashanthi , K. V. Sharada
The rapid proliferation of cybercrimes has underscored the critical importance of robust data acquisition methodologies in the field of digital forensics. This research publication explores various aspects of forensic data acquisition, focusing on techniques, tools, and best practices employed by forensic investigators to collect and preserve digital evidence effectively. Beginning with an overview of the escalating cyber threat landscape and the consequential need for forensic investigations, the publication delves into the fundamental concepts of data acquisition, emphasizing the significance of ensuring data integrity and admissibility in legal proceedings. It examines the process of acquiring both volatile and non-volatile data from diverse sources, including hard drives, RAM, and other digital storage media. Furthermore, evaluates a range of forensic imaging and validation methods, encompassing tools such as Belkasoft live RAM capturer, AccessData FTK Imager, and ProDiscover, alongside validation techniques using PowerShell utility and commercial forensic software. Through comprehensive analysis and discussion, this study serves as a valuable resource for forensic practitioners, researchers, and legal professionals seeking to enhance their understanding of forensic data acquisition methodologies in the ever-evolving landscape of cybercrime investigation.
Volume: 15
Issue: 4
Page: 4022-4030
Publish at: 2025-08-01

Exploring bibliometric trends in speech emotion recognition (2020-2024)

10.11591/ijai.v14.i4.pp3421-3434
Yesy Diah Rosita , Muhammad Raafi'u Firmansyah , Annisaa Utami
Speech Emotion Recognition (SER) is crucial in various real-world applications, including healthcare, human-computer interaction, and affective computing. By enabling systems to detect and respond to human emotions through vocal cues, SER enhances user experience, supports mental health monitoring, and improves adaptive technologies. This research presents a bibliometric analysis of SER based on 68 articles from 2020 to early 2024. The findings show a significant increase in publications each year, reflecting the growing interest in SER research. The analysis highlights various approaches in preprocessing, data sources, feature extraction, and emotion classification. India and China emerged as the most active contributors, with external funding, particularly from the NSFC, playing a significant role in the advancement of SER research. SVM remains the most widely used classification model, followed by KNN and CNN. However, several critical challenges persist, including inconsistent data quality, cross-linguistic variability, limited emotional diversity in datasets, and the complexity of real-time implementation. These limitations hinder the generalizability and scalability of SER systems in practical environments. Addressing these gaps is essential to enhance SER performance, especially for multimodal and multilingual applications. This study provides a detailed understanding of SER research trends, offering valuable insights for future advances in speech-based emotion recognition.
Volume: 14
Issue: 4
Page: 3421-3434
Publish at: 2025-08-01

Optimization model of vehicle routing problem with heterogenous time windows

10.11591/ijece.v15i4.pp4043-4057
Herman Mawengkang , Muhammad Romi Syahputra , Sutarman Sutarman , Gerhard Wilhelm Weber
This study proposes a novel optimization framework for the vehicle routing problem with heterogeneous time windows, a critical aspect in logistics and supply chain operations. Unlike conventional vehicle routing problem (VRP) models that assume uniform service schedules and fleet capacities, our approach acknowledges the diverse time constraints and vehicle specifications often encountered in real-world scenarios. By formulating the problem as a mixed integer linear programming model, we incorporate constraints related to time windows, vehicle load capacities, and travel distances. To tackle the NP-hard complexity, we employ a hybrid strategy combining metaheuristic algorithms with exact methods, thus ensuring both solution quality and computational efficiency. Extensive computational experiments, conducted on benchmark datasets and real-world logistics data, confirm the superiority of our model in terms of solution quality, runtime, and adaptability. These findings underscore the model’s practicality for industries facing dynamic routing requirements and tight service windows. Furthermore, the proposed framework equips decision-makers with a robust tool for optimizing route planning, ultimately enhancing service quality, reducing operational costs, and promoting more reliable delivery outcomes.
Volume: 15
Issue: 4
Page: 4043-4057
Publish at: 2025-08-01

Design strategies for solar photovoltaic integration in rural areas

10.11591/ijece.v15i4.pp3603-3612
Intan Mastura Saadon , Emy Zairah Ahmad , Nurbahirah Norddin , Norain Idris
This study explores the optimization of photovoltaic (PV) systems in the Sungai Tiang Camp region, Malaysia, with a focus on determining the ideal tilt angles to maximize energy generation in a tropical environment while incorporating a cost analysis. While existing studies optimize tilt angles for energy maximization in temperate regions, this study addresses the unique climatic and socio-economic conditions of rural Malaysia. Unlike fixed-tilt assumptions common in prior work, this research explores cost-effective, manually adjustable systems tailored for local weather patterns and rural affordability. To address this, the study examines the relationship between tilt angle, solar irradiance, temperature and output power. The results are analyzed to identify optimal configurations. Results reveal that tilt angles between 5° and 10° deliver the highest energy output, with slight seasonal adjustments for efficiency improvement. These findings align with Malaysia's tropical solar profile, offering practical insights for micro-scale solar deployments in similar climates. By addressing the unique needs of remote areas, this research contributes to bridging the gap in localized PV studies. Its outcomes not only enhance the understanding of solar PV performance in tropical conditions but also provide valuable guidelines for rural electrification and sustainable energy solutions in equatorial regions worldwide.
Volume: 15
Issue: 4
Page: 3603-3612
Publish at: 2025-08-01

Optimized reactive power management system for smart grid architecture

10.11591/ijece.v15i4.pp3707-3716
Manju Jayakumar Raghvin , Manjula R. Bharamagoudra , Ritesh Dash
The Indian power grid is an extensive and mature power system that transfers large amounts of electricity between two regions linked by a power corridor. The increased reliance on decentralized renewable energy sources (RESs), such as solar power, has led to power system instability and voltage variations. Power quality and dependability in a smart grid (SG) setting can be enhanced by the careful tracking and administration of solar energy generated by panels. This study proposes a number of reactive power regulation algorithms that take smart grids into account. When developing a kernel, debugging is a must in optimal reactive power management. In this research, a debugging primitive called physical memory protection (PMP), a security feature, is considered. Debugging in the kernel domain requires specialized tools, in contrast to the user space where we have kernel assistance. This research proposes an optimal reactive power management in smart grid using kernel debugging model (ORPM-SG-KDM) for managing the reactive power efficiently. This research achieved 98.5% accuracy in kernel debugging and 99.2% accuracy in optimal reactive power management. Kernel debugging accuracy is increased by 1.8% and 3% of reactive power management accuracy is increased.
Volume: 15
Issue: 4
Page: 3707-3716
Publish at: 2025-08-01

An analysis between the Welsh-Powell and DSatur algorithms for coloring of sparse graphs

10.11591/ijece.v15i4.pp3867-3875
Radoslava Kraleva , Velin Kralev , Toma Katsarski
In this research an analysis between the Welsh-Powell and DSatur algorithms for the graph vertex coloring problem was presented. Both algorithms were implemented and analyzed as well. The method of the experiment was discussed and the 46 test graphs, which were divided into two sets, were presented. The results show that for sparse graphs with a smaller number of vertices and edges, both algorithms can be used for solving the problem. The results show that in 50% of the cases the Welsh-Powell algorithm found better solutions (23 in total). So, the DSatur algorithm found better solutions in only 19.6% of cases (9 in total). In the remaining 30.4% of cases, both algorithms found identical solutions. For graphs with a larger number of vertices, the usage of the Welsh-Powell algorithm is recommended as it finds better solutions. The execution time of the DSatur algorithm is greater than the execution time of the Welsh-Powell algorithm, reaching up to a minute for graphs with a larger number of vertices. For graphs with fewer vertices and edges, the execution times of both algorithms are shorter, but the time is still greater for the DSatur algorithm.
Volume: 15
Issue: 4
Page: 3867-3875
Publish at: 2025-08-01

Deep feature representation for automated plant species classification from leaf images

10.11591/ijece.v15i4.pp3759-3768
Nikhil Inamdar , Manjunath Managuli , Uttam Patil
Automated plant species classification using leaf images holds immense potential for advancing agricultural research, biodiversity conservation, and ecological monitoring. This study introduces a novel approach leveraging deep feature representation to achieve accurate and efficient classification based on leaf morphology. Convolutional neural networks (CNNs), including VGG16, ResNet50, DenseNet1, Inception, and Xception, are employed to extract high-level features from leaf images, capturing intricate patterns essential for species differentiation. To manage the extensive feature set extracted by these models, optimization techniques such as principal component analysis (PCA), variance thresholding, and recursive feature elimination (RFE) are applied. These methods streamline the feature set, making the classification process more efficient. The optimized features are then trained using classifiers like support vector machine (SVM), k-nearest neighbors (K-NN), decision trees (DT), and naive Bayes (NB), achieving average accuracies of 98.6%, 96.6%, 99.6%, and 99.7%, respectively, across various cross-validation methods. Experimental results on benchmark datasets demonstrate the effectiveness of this approach, achieving state-of-the-art performance in plant species classification. This work underscores the potential of deep feature representation in automated plant species classification, offering valuable insights for applications in agriculture, ecology, and environmental science.
Volume: 15
Issue: 4
Page: 3759-3768
Publish at: 2025-08-01
Show 63 of 1897

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration