Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,428 Article Results

SC-FDM-IDMA Scheme Employing BCH Coding

10.11591/ijece.v7i2.pp992-998
Roopali Agarwal , Manoj K. Shukla
In OFDM-IDMA scheme, intersymbol interference (ISI) is resolved by the OFDM layer and multiple access interference (MAI) is suppressed by the IDMA layer at low cost . However OFDM-IDMA scheme suffers high peak-to-average power ratio (PAPR) problem. For removing high PAPR problem a hybrid multiple access scheme SC-FDM-IDMA has been proposed. In this paper, bit error rate (BER) performance comparison of SC-FDM-IDMA scheme, OFDM-IDMA scheme and IDMA scheme have been duly presented.  Moreover, the BER performance of various subcarrier mapping methods for SC-FDM-IDMA scheme as well as other results with variation of different parameters have also been demonstrated. Finally simulation result for BER performance improvement has been shown employing BCH code. All the simulation results demonstrate the suitability of SC-FDM-IDMA scheme for wireless communication under AWGN channel environment.
Volume: 7
Issue: 2
Page: 992-998
Publish at: 2017-04-01

Optimal Siting of Distributed Generators in a Distribution Network using Artificial Immune System

10.11591/ijece.v7i2.pp641-649
Meera P.S. , S. Hemamalini
Distributed generation (DG) sources are being installed in distribution networks worldwide due to their numerous advantages over the conventional sources which include operational and economical benefits. Random placement of DG sources in a distribution network will result in adverse effects such as increased power loss, loss of voltage stability and reliability, increase in operational costs, power quality issues etc. This paper presents a methodology to obtain the optimal location for the placement of multiple DG sources in a distribution network from a technical perspective. Optimal location is obtained by evaluating a global multi-objective technical index (MOTI) using a weighted sum method. Clonal selection based artificial immune system (AIS) is used along with optimal power flow (OPF) technique to obtain the solution. The proposed method is executed on a standard IEEE-33 bus radial distribution system. The results justify the choice of AIS and the use of MOTI in optimal siting of DG sources which improves the distribution system efficiency to a great extent in terms of reduced real and reactive power losses, improved voltage profile and voltage stability. Solutions obtained using AIS are compared with Genetic algorithm (GA) and Particle Swarm optimization (PSO) solutions for the same objective function.
Volume: 7
Issue: 2
Page: 641-649
Publish at: 2017-04-01

Compact Digital Television (DTV) Antenna for Indoor Usage

10.11591/ijece.v7i2.pp784-790
Mohamad Aasyraaf Mohd Shaufi , Huda A. Majid , Zuhairiah Zainal Abidin , Samsul Haimi Dahlan , Mohamad Kamal A. Rahim , Osman Bin Ayop
A compact indoor digital antenna for digital terrestrial television is proposed. The design of the antenna begins with the material selection to construct the antenna by using CST software with a standard monopole antenna design. The antenna is then simulated and optimized. A bandwidth of 290 MHz (46.14%) between 500 MHz and 790 MHz is achieved with the antenna gain more than 3 dBi. Simulated results is used to demonstrate the performance of the antenna. The simulated return losses, together with the radiation patterns and gain are presented and discussed.
Volume: 7
Issue: 2
Page: 784-790
Publish at: 2017-04-01

Recent Trend in Electromagnetic Radiation and Compliance Assessments for 5G Communication

10.11591/ijece.v7i2.pp912-918
Nor Adibah Ibrahim , Tharek Abd. Rahman , Olakunle Elijah
The deployment of the 5G networks will feature high proliferation of radio base station (RBS) in order to meet the increasing demand for bandwidth and also to provide wider coverage that will support more mobile users and the internet-of-things (IoT). The radio frequency (RF) waves from the large-scale deployment of the RBS and mobile devices will raise concerns on the level of electromagnetic (EM) radiation exposure to the public. Hence, in this paper, we provide an overview of the exposure limits, discuss some of the effects of the EM emission, reduction techniques and compliance assessment for the 5G communication systems. We discuss the open issues and give future directions.
Volume: 7
Issue: 2
Page: 912-918
Publish at: 2017-04-01

A Modified Diagonal Mesh Shuffle Exchange Interconnection Network

10.11591/ijece.v7i2.pp1042-1050
Akash Punhani , Pardeep Kumar , Nitin Nitin
Interconnection network is an important part of the digital system. The interconnection mainly describes the topology of the network along with the routing algorithm and flow control mechanism. The topology of the network plays an important role on the performance of the system. Mesh interconnection network was the simplest topology, but has the limited bisection bandwidth on the other hand torus and diagonal mesh was having long links. The Modified diagonal mesh network tried to replace the torodial links but was having more average path length so in proposed topology we have tried to improve the average distance using shuffle exchange network over the boundary node. In this paper, we propose the architecture of Modified Diagonal Mesh Shuffle Exchange Interconnection Network. This Modified Diagonal Mesh Shuffle Exchange Interconnection network have been compared with four popular topologies that are simple 2D Mesh, 2D Torus, Diagonal Mesh and Modified Diagonal Mesh Interconnection Network on the four traffic patterns such as Bit Complement traffic, Neighbor traffic, Tornado traffic and Uniform traffic are used for comparisonand performance analysis. We have performed the analysis with a 5% and 10% of hotspot on the Uniform Traffic. The simulation results shows that the proposed topology is performed better on bit complement traffic and can also handle the other traffic up to certain level.
Volume: 7
Issue: 2
Page: 1042-1050
Publish at: 2017-04-01

The Application of Homer Optimization Software to Investigate the Prospects of Hybrid Renewable Energy System in Rural Communities of Sokoto in Nigeria

10.11591/ijece.v7i2.pp596-603
Abdullahi Abubakar Masud
This paper investigates the prospects and cost-effectiveness of implementation of standalone PV/wind system in sokoto state Nigeria. Daily electricity demand, yearly solar radiation and wind speed were applied to determine the optimum sizing of the renewable energy (RE) system. To design optimum RE with proper sizing of system components, meteorological data obtained from the National Aeronautics and Space Administration were applied as input for this study. In Nigeria, sokoto is a region with solar radiation of 6kWh/m2/day and wind speed of 5m/s at 10m above height. Using the Homer optimization software, the optimum integrated RE system is 35.21kW PV, 3 x 25kW wind turbines, 12 x 24V lead acid battery and 17.44kW converter. The system has a total capital cost of $249910.24, the replacement cost of $82914.85 and maintenance cost of $53802.80 for 25 years. Though the initial capital cost is high but the long term benefits are enormous, considering the high cost of implementing rural electrification scheme, coupled with ahike in electricity tariff. There is also a payback period of 5 years. The results imply a standalone PV/wind system is feasible in rural communities of sokoto with 100% pollution free energy system.
Volume: 7
Issue: 2
Page: 596-603
Publish at: 2017-04-01

Artificial Neural Network for Non-Intrusive Electrical Energy Monitoring System

10.11591/ijeecs.v6.i1.pp124-131
Khairell Khazin Kaman , Mahdi Faramarzi , Sallehuddin Ibrahim , Mohd Amri Md Yunus
 This paper discusses non-intrusive electrical energy monitoring (NIEM) system in an effort to minimize electrical energy wastages. To realize the system, an energy meter is used to measure the electrical consumption by electrical appliances. The obtained data were analyzed using a method called multilayer perceptron (MLP) technique of artificial neural network (ANN). The event detection was implemented to identify the type of loads and the power consumption of the load which were identified as fan and lamp. The switching ON and OFF output events of the loads were inputted to MLP in order to test the capability of MLP in classifying the type of loads. The data were divided to 70% for training, 15% for testing, and 15% for validation. The output of the MLP is either ‘1’ for fan or ‘0’ for lamp. In conclusion, MLP with five hidden neurons results obtained the lowest average training time with 2.699 seconds, a small number of epochs with 62 iterations, a min square error of 7.3872×10-5, and a high regression coefficient of 0.99050.
Volume: 6
Issue: 1
Page: 124-131
Publish at: 2017-04-01

Game-Theoretic Channel Allocation in Cognitive Radio Networks

10.11591/ijece.v7i2.pp986-991
Sangsoon Lim
Cognitive radio networks provide dynamic spectrum access techniques to support the increase in spectrum demand. In particular, the spectrum sharing among primary and secondary users can improve spectrum utilization in unused spectrum by primary users. In this paper, we propose a novel game theoretic channel allocation framework to maximize channel utilization in cognitive radio networks. We degisn the utility function based on the co-channel interference among primary and secondary users. In addition, we embed the property of the adjacent channel intererence to consider real wireless environment. The results show that the utility function converges quickly to Nash equilibrium and achieves channel gain by up to 25 dB compared to initial assignment.
Volume: 7
Issue: 2
Page: 986-991
Publish at: 2017-04-01

Evaluation of the Energy Performance of the Amougdoul Wind Farm, Morocco

10.11591/ijece.v7i2.pp692-705
Asma Ezzaidi , Mustapha Elyaqouti , Lahoussine Bouhouch , Ahmed Ihlal
This paper is concerned with the assessment of the the performance of the Amougdoul wind farm. We have determined the Weibull parameters; namely the scale parameter, c (m/s) and shape parameter, k. After that, we have estimated energy output by a wind turbine using two techniques: the useful power calculation method and the method based on the modeling of the power curve, which is respectively 134.5 kW and 194.19 KW corresponding to 27% and 39% of the available wind energy, which confirm that the conversion efficiency does not exceed 40%.
Volume: 7
Issue: 2
Page: 692-705
Publish at: 2017-04-01

Image Processing for Rapidly Eye Detection based on Robust Haar Sliding Window

10.11591/ijece.v7i2.pp823-830
Fitri Utaminingrum , Renaldi Primaswara Praetya , Yuita Arum Sari
Object Detection using Haar Cascade Clasifier widely applied in several devices and applications as a medium of interaction between human and computer such as a tool control that utilizes the detection of eye movements. Obviously speed and precision in the detection process such as eyes, has an effect if implemented on a device. If the eye could not detect accurately, controlling device systems could reach bad detection as well. The proposed method can be used as an approach to detect the eye region of eye based on haar classifier method by means of modifying the direction of sliding window. In which, it was initially placed in the middle position of image on facial area by assuming the location of eyes area in the central region of the image. While the window region of conventional haar cascade scan the whole of image start from the left top corner. From the experiment by using our proposed method, it can speed up the the computation time and improve accuracy significantly reach to 92,4%.
Volume: 7
Issue: 2
Page: 823-830
Publish at: 2017-04-01

An Improved Integrated Hash and Attributed based Encryption Model on High Dimensional Data in Cloud Environment

10.11591/ijece.v7i2.pp950-960
Satheesh K S V A Kavuri , Gangadhara Rao Kancherla , Basaveswararao Bobba
Cloud computing is a distributed architecture where user can store their private, public or any application software components on it. Many cloud based privacy protection solutions have been implemented, however most of them only focus on limited data resources and storage format. Data confidentiality and inefficient data access methods are the major issues which block the cloud users to store their high dimensional data. With more and more cloud based applications are being available and stored on various cloud servers, a novel multi-user based privacy protection mechanism need to design and develop to improve the privacy protection on high dimensional data. In this paper, a novel integrity algorithm with attribute based encryption model was implemented to ensure confidentiality for high dimensional data security on cloud storage. The main objective of this model is to store, transmit and retrieve the high dimensional cloud data with low computational time and high security. Experimental results show that the proposed model has high data scalability, less computational time and low memory usage compared to traditional cloud based privacy protection models.
Volume: 7
Issue: 2
Page: 950-960
Publish at: 2017-04-01

Parallel Genetic Algorithms for University Scheduling Problem

10.11591/ijece.v7i2.pp1096-1102
Artan Berisha , Eliot Bytyçi , Ardeshir Tershnjaku
University scheduling timetabling problem, falls into NP hard problems. Re-searchers have tried with many techniques to find the most suitable and fastest way for solving the problem. With the emergence of multi-core systems, the parallel implementation was considered for finding the solution. Our approaches attempt to combine several techniques in two algorithms: coarse grained algorithm and multi thread tournament algorithm. The results obtained from two algorithms are compared, using an algorithm evaluation function. Considering execution time, the coarse grained algorithm performed twice better than the multi thread algorithm.
Volume: 7
Issue: 2
Page: 1096-1102
Publish at: 2017-04-01

Human Presence Recognition in a Closed Space by using Cost-effective CO2 Sensor and the Information Gain Processing Method

10.11591/ijeecs.v5.i3.pp549-555
Kimio Oguchi , Ryoya Ozawa
The recent rapid progress in ICT technologies such as smart/intelligent sensor devices, broadband/ubiquitous networks, and Internet of everything (IoT) has advanced the penetration of sensor networks and their applications. The requirements of human daily life, security, energy efficiency, safety, comfort, and ecological, can be achieved with the help of these networks and applications. Traditionally, if we want some information on, for example, environment status, a variety of dedicated sensors is needed. This will increase the number of sensors installed and thus system cost, sensor data traffic loads, and installation difficulty. Therefore, we need to find redundancies in the captured information or interpret the semantics captured by non-dedicated sensors to reduce sensor network overheads. This paper clarifies the feasibility of recognizing human presence in a space by processing information captured by other than dedicated sensors. It proposes a method and implements it as a cost-effective prototype sensor network for a university library. This method processes CO2 concentration, originally designed to check environment status. In the experiment, training data is captured with none, one, or two subjects. The information gain (IG) method is applied to the resulting data, to set thresholds and thus judge the number of people. Human presence (none, one or two people) is accurately recognized from the CO2 concentration data. The experiments clarify that a CO2 sensor in set in a small room to check environment status can recognize the number of humans in the room with more than 70 % accuracy. This eliminates the need for an extra sensor, which reduces sensor network cost.
Volume: 5
Issue: 3
Page: 549-555
Publish at: 2017-03-01

New Sensorless Sliding Mode Control of a Five-phase Permanent Magnet Synchronous Motor Drive Based on Sliding Mode Observer

10.11591/ijpeds.v8.i1.pp184-203
Anissa Hosseyni , Ramzi Trabelsi , Sanjeeve Kumar , Med Faouzi Mimouni , Atif Iqbal
This paper proposes a sensorless sliding mode control (SMC) for a five phase permanent magnet synchronous motor (PMSM) based on a sliding mode observer (SMO). The stability of the proposed strategy is proved in the sense of the Lyapunov theory. The sliding mode controller is designed with an integral switching surface and the sliding mode observer is developed for the estimation of rotor position and rotor speed. The proposed sensorless control strategy exhibits good dynamic response to disturbances. Simulation results are provided to prove the effectiveness of the proposed strategy.
Volume: 8
Issue: 1
Page: 184-203
Publish at: 2017-03-01

A New Approach for Classification of Fault in Transmission Line with Combination of Wavelet Multi Resolution Analysis and Neural Networks

10.11591/ijpeds.v8.i1.pp505-512
Y Srinivasa Rao , G. Ravi Kumar , G. Kesava Rao
An appropriate fault detection and classification of power system transmission line using discrete wavelet transform and artificial neural networks is performed in this paper. The analysis is carried out by applying discrete wavelet transform for obtained fault phase currents. The work represented in this paper are mainly concentrated on classification of fault and this classification is done based on the obtained energy values after applying discrete wavelet transform by taking this values as an input for the neural network. The proposed system and analysis is carried out in Matlab Simulink.
Volume: 8
Issue: 1
Page: 505-512
Publish at: 2017-03-01
Show 1474 of 1896

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration