Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

29,082 Article Results

Credal Fusion of Classifications for Noisy and Uncertain Data

10.11591/ijece.v7i2.pp1071-1087
Fatma Karem , Mounir Dhibi , Arnaud Martin , Med Salim Bouhlel
This paper reports on an investigation in classification technique employed to classify noised and uncertain data. However, classification is not an easy task. It is a significant challenge to discover knowledge from uncertain data. In fact, we can find many problems. More time we don't have a good or a big learning database for supervised classification. Also, when training data contains noise or missing values, classification accuracy will be affected dramatically. So to extract groups from  data is not easy to do. They are overlapped and not very separated from each other. Another problem which can be cited here is the uncertainty due to measuring devices. Consequentially classification model is not so robust and strong to classify new objects. In this work, we present a novel classification algorithm to cover these problems. We materialize our main idea by using belief function theory to do combination between classification and clustering. This theory treats very well imprecision and uncertainty linked to classification. Experimental results show that our approach has ability to significantly improve the quality of classification of generic database.
Volume: 7
Issue: 2
Page: 1071-1087
Publish at: 2017-04-01

Development of Load Control Algorithm for PV Microgrid

10.11591/ijece.v7i2.pp619-630
Mohamad Haireen Bin Fatheli , Nur Izzati Zolkifri , Chin Kim Gan , Musa Bin Yusup Lada
The variability of solar irradiance which is caused by the weather conditions could result in the mismatch between the solar PV generation and the demand particularly in the microgrid context. This may lead to the detrimental effects of over/under voltage or over/under frequency. In this regard, this paper presents the laboratory set-up of a grid-connected PV inverter operates in islanding condition. To achieve this, a load control algorithm is proposed to provide the autonomous real time demand control that follows the PV generation to maintain generation-demand equilibrium requirement. The laboratory results show that the proposed load control algorithm can successfully address the voltage and the frequency violation in islanding condition, regardless of the variation of irradiance and power generated by the PV sources.
Volume: 7
Issue: 2
Page: 619-630
Publish at: 2017-04-01

A New Compact and Miniaturized GCPW-fed Slotted Rectangular antenna for Wideband UHF FIRD Applications

10.11591/ijece.v7i2.pp767-774
Rachid Dakir , Jamal Zbitou , Ahmed Mouhsen , A. Tribak , M. Latrach , A. M. Sanchez
This paper presents the development of a new miniaturized and compact GCPW-fed slotted rectangular antenna structure reader for wideband UHF RFID applications. The optimized proposed antenna is suitable to operate a large frequency-band range from 0.8GHz to 1.3GHz with a bandwidth of 500MHz with a return loss less than -10dB. The antenna is based on a 1.6mm thickness FR4 epoxy substrate with a reduce dimensions compared to the simple rectangular antenna and size of proposed antenna is 47*40mm2. The new design consists of a compact rectangular patch with symmetric U-shaped slots and I-shaped include a partial ground plan and fed by 50 Grounded coplanar line. The antenna parameters have been investigated and optimized by   using   CST Microwave Studio. To validate the CST Microwave Studio results before the   antenna achievement,   we   have   conducted another study by using ADS. The   final circuit   achieved, measured and validated. Experimental results show that the proposed antenna has good radiation characteristics and operating in UHF-RFID applications.
Volume: 7
Issue: 2
Page: 767-774
Publish at: 2017-04-01

5G Coupler Design for Intelligent Transportation System (ITS) Application

10.11591/ijece.v7i2.pp899-904
Dyg Norkhairunnisa Abang Zaidel , Norhudah Seman , Mohd Ridhuan Mohd Sharip , Dyg Azra Awang Mat , Nur Alia Athirah Mohtadzar
Aiming to achieve 3-dB coupling, operating in fifth generation (5G) technologies, this paper introduces a new design of tight coupling coupler that will be operated in 5G technologies. Two stubs and two slots have been implemented into the 3-dB coupler design in order to achieve impedance matching between the ports and to give better coupling performances, respectively. Moreover, a study on the stubs’ and slots’ effects towards the S31 of the 3-dB coupler has also been presented in this paper. The proposed coupler is designed on Rogers RO4003C substrate. The simulation results and the analytical study on the stubs and slots implementation show that both stubs and slots affect the performance of the coupling coefficient.
Volume: 7
Issue: 2
Page: 899-904
Publish at: 2017-04-01

Hybrid System of Tiered Multivariate Analysis and Artificial Neural Network for Coronary Heart Disease Diagnosis

10.11591/ijece.v7i2.pp1023-1031
Wiharto Wiharto , Hari Kusnanto , Herianto Herianto
Improved system performance diagnosis of coronary heart disease becomes an important topic in research for several decades. One improvement would be done by features selection, so only the attributes that influence is used in the diagnosis system using data mining algorithms. Unfortunately, the most feature selection is done with the assumption has provided all the necessary attributes, regardless of the stage of obtaining the attribute, and cost required. This research proposes a hybrid model system for diagnosis of coronary heart disease. System diagnosis preceded the feature selection process, using tiered multivariate analysis. The analytical method used is logistic regression. The next stage, the classification by using multi-layer perceptron neural network. Based on test results, system performance proposed value for accuracy 86.3%, sensitivity 84.80%, specificity 88.20%, positive prediction value (PPV) 90.03%, negative prediction value (NPV) 81.80%, accuracy 86,30%  and area under the curve (AUC) of 92.1%. The performance of a diagnosis using a combination attributes of risk factors,symptoms and exercise ECG. The conclusion that can be drawn is that the proposed diagnosis system capable of delivering performance in the very good category, with a number of attributes that are not a lot of checks and a relatively low cost.
Volume: 7
Issue: 2
Page: 1023-1031
Publish at: 2017-04-01

The Effect of Plasma-Treated Boron Nitride on Partial Discharge Characteristics of LDPE

10.11591/ijece.v7i2.pp568-575
N.A Awang , M.H Ahmad , Y.Z. Arief , I.H. Zakaria , N.A. Ahmad
Power supply reliability is a key factor in a country economic stability. It is contributed by the reliable power distributor via transmission lines, overhead or underground cables. However, the power cables and accessories are always exposed to pre-breakdown phenomena known as partial discharges (PD) which commonly occur in microvoids, defects or protrusions inside the insulation. To improve the performance of the cable insulation against PD, nanofillers are added into the insulating materials. However, to achieve superior performance of PD resistance, the nanofillers must be homogeneously dispersed into the polymer matrices with tightly bonded interfacial zones. Therefore, this could be achieved by employing method of surface functionalization by using cold atmospheric plasma to strengthen the filler/polymer interfaces. In view of foregoing, this study investigated the effects of surface treated boron nitride (BN) nanoparticles in Low Density Polyethylene (LDPE) on the PD characteristics by following CIGRE Method II at 7 kVrms applied voltage. The phase resolved PD characteristics were performed. The results revealed that by treating the nanofillers with cold plasma, the PD resistance of LDPE were highly achieved compared with the untreated BN nanofillers.
Volume: 7
Issue: 2
Page: 568-575
Publish at: 2017-04-01

Power Quality Enhancement in Grid Connected PV Systems using High Step Up DC-DC Converter

10.11591/ijece.v7i2.pp720-728
V S Prasadarao K , K V Krishna Rao , P Bala Koteswara Rao , T. Abishai
Renewable energy sources (RES) are gaining more importance in the present scenario due to the depletion of fossil fuels and increasing power demand. Solar energy is the one of the most promising as it is clean and easily available source. The voltage obtained from the PV system is low. This voltage is increased by high step up dc-dc converter which uses only one switch leads to low switching losses and hence the efficiency of this converter is high. To get the good response this converter is operated in closed loop manner. Integration of PV system with existing grid has so many issues like distorted voltage, current and reactive power control etc. This paper presents a four leg inverter which works on hysteresis current control technique to address the power quality issues like reactive power compensation, balanced load currents and compensation of neutral current. The switching to the inverter is designed in such a way that it supplies the extra current to stabilise the current of the grid that is being supplied to the loads. Finally, the proposed technique is validated by using mat lab/Simulink software and corresponding results are presented in this paper.
Volume: 7
Issue: 2
Page: 720-728
Publish at: 2017-04-01

p-Laplace Variational Image Inpainting Model Using Riesz Fractional Differential Filter

10.11591/ijece.v7i2.pp850-857
Sridevi Gamini , S Srinivas Kumar
In this paper, p-Laplace variational image inpainting model with symmetric Riesz fractional differential filter is proposed. Variational inpainting models are very useful to restore many smaller damaged regions of an image. Integer order variational image inpainting models (especially second and fourth order) work well to complete the unknown regions. However, in the process of inpainting with these models, any of the unindented visual effects such as staircasing, speckle noise, edge blurring, or loss in contrast are introduced. Recently, fractional derivative operators were applied by researchers to restore the damaged regions of the image. Experimentation with these operators for variational image inpainting led to the conclusion that second order symmetric Riesz fractional differential operator not only completes the damaged regions effectively, but also reducing unintended effects. In this article, The filling process of damaged regions is based on the fractional central curvature term. The proposed model is compared with integer order variational models and also GrunwaldLetnikov fractional derivative based variational inpainting in terms of peak signal to noise ratio, structural similarity and mutual information.
Volume: 7
Issue: 2
Page: 850-857
Publish at: 2017-04-01

5G Fixed Beam Switching on Microstrip Patch Antenna

10.11591/ijece.v7i2.pp975-980
Low Ching Yu , Muhammad Ramlee Kamarudin
5G technology is using millimeter-wave band to improve the wireless communication system.  However, narrow transmitter and receiver beams have caused the beam coverage area to be limited. Due to propagation limitations of mm wave band, beam forming technology with multi-beam based communication system, has been focused to overcome the problem. In this letter, a fixed beam switching method is introduced. By changing the switches, four different configurations of patch array antennas are designed to investigate their performances in terms of radiation patterns, beam forming angle, gain, half-power bandwidth and impedance bandwidth at 28 GHz operating frequency for 5G application. Mircostrip antenna is preferred due to its low profile, easy in feeding and array configurations. Three different beam directions had been formed at -15°, 0°, and 15° with half-power bandwidth of range 45˚ to 50˚.
Volume: 7
Issue: 2
Page: 975-980
Publish at: 2017-04-01

Voltage Compensation In Wind Power System Using STATCOM Controlled By Soft Computing Techniques

10.11591/ijece.v7i2.pp667-680
Bineeta Mukhopadhyay , Rajib Kumar Mandal , Girish Kumar Choudhary
When severe voltage sags occur in weak power systems associated with grid-connected wind farms employing doubly fed induction generators, voltage instability occurs which may lead to forced disconnection of wind turbine. Shunt flexible AC transmission system devices like static synchronous compensator (STATCOM) may be harnessed to provide voltage support by dynamic injection of reactive power. In this work, the STATCOM provided voltage compensation at the point of common coupling in five test cases, namely, simultaneous occurrence of step change (drop) in wind speed and dip in grid voltage, single line to ground, line to line, double line to ground faults and sudden increment in load by more than a thousand times. Three techniques were employed to control the STATCOM, namely, fuzzy logic, particle swarm optimization and a combination of both. A performance comparison was made among the three soft computing techniques used to control the STATCOM on the basis of the amount of voltage compensation offered at the point of common coupling. The simulations were done with the help of SimPowerSystems available with MATLAB / SIMULINK and the results validated that the STATCOM controlled by all the three techniques offered voltage compensation in all the cases considered.
Volume: 7
Issue: 2
Page: 667-680
Publish at: 2017-04-01

Parametric Comparison of K-means and Adaptive K-means Clustering Performance on Different Images

10.11591/ijece.v7i2.pp810-817
Madhusmita Sahu , K. Parvathi , M. Vamsi Krishna
Image segmentation takes a major role to analyzing the area of interest in image processing. Many researchers have used different types of techniques to analyzing the image. One of the widely used techniques is K-means clustering. In this paper we use two algorithms K-means and the advance of K-means is called as adaptive K-means clustering. Both the algorithms are using in different types of image and got a successful result. By comparing the Time period, PSNR and RMSE value from the result of both algorithms we prove that the Adaptive K-means clustering algorithm gives a best result as compard to K-means clustering in image segmentation.    
Volume: 7
Issue: 2
Page: 810-817
Publish at: 2017-04-01

Detection of Rogue Access Point in WLAN using Hopfield Neural Network

10.11591/ijece.v7i2.pp1060-1070
Menal Dahiya , Sumeet Gill
The serious issue in the field of wireless communication is the security and how an organization implements the steps against security breach. The major attack on any organization is Man in the Middle attack which is difficult to manage. This attack leads to number of unauthorized access points, called rogue access points which are not detected easily. In this paper, we proposed a Hopfield Neural Network approach for an automatic detection of these rogue access points in wireless networking. Here, we store the passwords of the authentic devices in the weight matrix format and match the patterns at the time of login. Simulation experiment shows that this method is more secure than the traditional one in WLAN.
Volume: 7
Issue: 2
Page: 1060-1070
Publish at: 2017-04-01

Optimizing Tri-Core Permanent-Magnet-Linear-Generator Direct-Drive Wave-Energy-Conversion System Design for Sea Wave Characteristics in South Coast Yogyakarta

10.11591/ijece.v7i2.pp610-618
Fransisco Danang Wijaya , Sarjiya Sarjiya , Muhammad Rifa'i Putra Sugita
According to statistical data, the south coast Yogyakarta has significant ocean wave height which can be used to generate electricity by using wave-energy-converter system. One of the simplest way to convert wave energy to electricity is using direct-drive wave-energy-conversion (WEC) system with permanent-magnet-linear-generator (PMLG). This method is simple because it doesn’t need to convert linear motion to rotational motion. However, PMLG has large electric power losses, has great weight in both of the stator and rotor, and expensive to make. In this paper, a tri-core PMLG was designed. The electric power losses in the winding, translator weight, and manufacturing cost were ideally minimized using multiobjective optimization combined with simulated annealing (SA) algorithm. Then, the design was verified using finite element analysis. The optimized design of this PMLG was simulated using sinusoidal ocean waves which usually occur in the south coast of Yogyakarta to analyze the performance of this linear generator. Simulation result has been shown that this generator can generate 911 watt peak output power at the rated condition and at the optimum load with 81.14% efficiency. This confirms that the optimized design of PMLG is suitable for direct-drive WEC with low power losses and manufacturing cost.
Volume: 7
Issue: 2
Page: 610-618
Publish at: 2017-04-01

A New Instrumentation Amplifier Architecture Based on Differential Difference Amplifier for Biological Signal Processing

10.11591/ijece.v7i2.pp759-766
Zainul Abidin , Koichi Tanno , Shota Mago , Hiroki Tamura
In this paper, a new Instrumentation Amplifier (IA) architecture for biological signal pro-cessing is proposed. First stage of the proposed IA architecture consists of fully balance differential difference amplifier and three resistors. Its second stage was designed by using differential difference amplifier and two resistors. The second stage has smaller number of resistors than that of conventional one. The IA architectures are simulated and compared by using 1P 2M 0:6-m CMOS process. From HSPICE simulation result, lower common-mode voltage can be achieved by the proposed IA architecture. Average common-mode gain (Ac) of the proposed IA architecture is 31:26 dB lower than that of conventional one under 3% resistor mismatches condition. Therefore, the Ac of the proposed IA architecture is more insensitive to resistor mismatches and suitable for biological signal processing.
Volume: 7
Issue: 2
Page: 759-766
Publish at: 2017-04-01

Dielectric Strength Improvement of Natural Ester Insulation Oil via Mixed Antioxidants: Taguchi Approach

10.11591/.v7i2.pp650-658
Sharin Ab Ghani , Zulkarnain Ahmad Noorden , Nor Asiah Muhamad , Hidayat Zainuddin , Muhammad Ilman Hakimi Chua Abdullah , Imran Sutan Chairul
Recently, natural ester insulation (NEI) oils are found to be the best candidates to replace mineral-based insulation oils for oil-immersed transformer applications. However, NEI oils are prone to oxidation due to their poor oxidative stability which can be improved by adding antioxidants into the oils. Latest studies have also shown that the use of selected antioxidants improves the AC breakdown voltage (BdV) of NEI oils. However, the experiments in previous studies were designed using the conventional one-factor-at-a-time (OFAT) method, which requires a large number of samples to be tested in order to determine the optimum response. Thus, a Taguchi-based designed experiment is introduced in this study in replacement of the OFAT method. It is found that this method is capable of determining the optimum concentrations of propyl gallate (PG) and citric acid (CA) which will maximize the AC BdV and improve the oxidative stability of the NEI oil. An AC breakdown voltage test is conducted in accordance with the ASTM D1816 standard using Megger OTS60PB portable oil tester, in which the electrode gap distance is kept fixed at 1 mm. The results indicate that the addition of PG and CA antioxidants increases the AC BdV of the rapeseed-based NEI oil. It is found that the optimum concentrations of PG and CA antioxidant is 0.05 and 0.25 wt.%, respectively. Lastly, the model developed in this study is analysed using analysis of variance (ANOVA). Validation test is also conducted on the optimized NEI oil to determine its dielectric strength and oxidative stability.
Volume: 7
Issue: 2
Page: 650-658
Publish at: 2017-04-01
Show 1509 of 1939

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration