Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

29,325 Article Results

5G Coupler Design for Intelligent Transportation System (ITS) Application

10.11591/.v7i2.pp899-904
Dyg Norkhairunnisa Abang Zaidel , Norhudah Seman , Mohd Ridhuan Mohd Sharip , Dyg Azra Awang Mat , Nur Alia Athirah Mohtadzar
Aiming to achieve 3-dB coupling, operating in fifth generation (5G) technologies, this paper introduces a new design of tight coupling coupler that will be operated in 5G technologies. Two stubs and two slots have been implemented into the 3-dB coupler design in order to achieve impedance matching between the ports and to give better coupling performances, respectively. Moreover, a study on the stubs’ and slots’ effects towards the S31 of the 3-dB coupler has also been presented in this paper. The proposed coupler is designed on Rogers RO4003C substrate. The simulation results and the analytical study on the stubs and slots implementation show that both stubs and slots affect the performance of the coupling coefficient.
Volume: 7
Issue: 2
Page: 899-904
Publish at: 2017-04-01

Enhanced Time of Use Electricity Pricing for Industrial Customers in Malaysia

10.11591/ijeecs.v6.i1.pp155-159
Nur Azrina Mohd Azman , Md Pauzi Abdullah , Mohammad Yusri hasan , Dalila Mat Said , Faridah Hussin
New Time of Use (ToU) tariff scheme known as Enhanced ToU (EToU) has been introduced on 1st January 2016 for industrial customers in Malaysia. EToU scheme is the advanced version of current ToU where the daily time frame is divided into six period blocks, as compared to only two in the existing ToU. Mid-peak tariff is introduced on top of peak-hour and off-peak tariff. The new scheme is designed to reduce Malaysia’s peak hour electricity demand. On customer side, they could be benefited from the low off-peak tariff by simply shifting their consumption. However, it depends on their consumption profile and their flexibility in shifting their consumption. Since EToU scheme is voluntary, each customer needs to perform cost-benefit analysis before deciding to switch into the scheme. This paper analyzes this problem by considering EToU tariff scheme for industry and customer’s electricity consumption profile. Case studies using different practical data from different industries are presented and discussed in this paper.
Volume: 6
Issue: 1
Page: 155-159
Publish at: 2017-04-01

Power Quality Enhancement in Grid Connected PV Systems using High Step Up DC-DC Converter

10.11591/.v7i2.pp720-728
V S Prasadarao K , K V Krishna Rao , P Bala Koteswara Rao , T. Abishai
Renewable energy sources (RES) are gaining more importance in the present scenario due to the depletion of fossil fuels and increasing power demand. Solar energy is the one of the most promising as it is clean and easily available source. The voltage obtained from the PV system is low. This voltage is increased by high step up dc-dc converter which uses only one switch leads to low switching losses and hence the efficiency of this converter is high. To get the good response this converter is operated in closed loop manner. Integration of PV system with existing grid has so many issues like distorted voltage, current and reactive power control etc. This paper presents a four leg inverter which works on hysteresis current control technique to address the power quality issues like reactive power compensation, balanced load currents and compensation of neutral current. The switching to the inverter is designed in such a way that it supplies the extra current to stabilise the current of the grid that is being supplied to the loads. Finally, the proposed technique is validated by using mat lab/Simulink software and corresponding results are presented in this paper.
Volume: 7
Issue: 2
Page: 720-728
Publish at: 2017-04-01

Fabrication and Analysis of Amorphous Silicon TFT

10.11591/.v7i2.pp754-758
Srikanth G , Yadhuraj S R , Subramanyam T K , Satheesh Babu Gandla , Uma B V
The display technology and large area electronics got momentum with the introduction of TFT devices. TFTs can be made using different semiconducting materials or organic conducting materials as the active layer. Each one of them differ in their performance depending on the material used for the active layer. In this paper, fabrication of amorphous silicon TFT using PECVD is carried out. Simulation of the a-Si: H TFT is also carried out with the dimensions similar to that of the masks used for the fabrication. The Id-Vd plot for both the simulation and fabrication is obtained and studied.
Volume: 7
Issue: 2
Page: 754-758
Publish at: 2017-04-01

Development of Compact P-Band Vector Reflectometer

10.11591/.v7i2.pp791-798
Yi Lung Then , Kok Yeow You , Ming Hao Lee , Chia Yew Lee
A compact and low cost portable vector reflectometer is designed for a reliable measurement of reflection coefficient, S11. This reflectometer focuses on return loss measurement of frequency ranges from 450 MHz to 550 MHz. The detection of magnitude and phase is based on the utilization of surface mount Analog Devices AD8302 gain/phase detector. The data acquisition is controlled by using Arduino-Nano 3.0 microcontroller, with the use of two analog to digital converter (ADC) and a digital to analog converter (DAC). One port (Open, short and matched load) calibration technique is used to eliminate systematic errors prior to data acquisition. The evaluation of the reflectometer is done by comparing the result of the measurement to that of vector network analyzer.
Volume: 7
Issue: 2
Page: 791-798
Publish at: 2017-04-01

Wide Area Oscillation Damping using Utility-Scale PV Power Plants Capabilities

10.11591/.v7i2.pp681-691
Mehrdad Moradi , Pouria Maghouli
With increasing implementation of Wide Area Measurement Systems (WAMS) in power grids, application of wide area damping controllers (WADCs) to damp power system oscillations is of interest. On the other hand it is well known that rapidly increasing integration of renewable energy sources into the grid can dangerously reduce the inertia of the system and degrade the stability of power systems. This paper aimed to design a novel WADC for a utility-scale PV solar farm to damp out inter area oscillations while the main focus of the work is to eliminate the impact of communication delays of wide-area signals from the WAMS. Moreover the PV farm impact on inter area oscillation mitigation is investigated in various case studies, namely, with WADC on the active power control loop and with WADC on the reactive power control loop. The Quantum Particle Swarm Optimization (QPSO) technique is applied to normalize and optimize the parameters of WADC for inter-area oscillations damping and continuous compensation of time-varying latencies. The proposed method is prosperously applied in a 16-bus six-machine test system and various case studies are conducted to demonstrate the potential of the proposed structure.
Volume: 7
Issue: 2
Page: 681-691
Publish at: 2017-04-01

Characterization of Acrylonitrile Butadiene Styrene for 3D Printed Patch Antenna

10.11591/ijeecs.v6.i1.pp116-123
Norun Abdul Malek , Athirah Mohd Ramly , Atiah Sidek , Sarah Yasmin Mohamad
3D printing is one of the additive manufacturing technology that has gain popularity for time saving and complex design. This technology increases a degree of flexibility for potential 3D RF applications such as wearable and conformal antennas. This paper demonstrates a circular patch antenna fabricated on 3D printed Acrylonitrile Butadiene Styrene (ABS) filament. The main reason of using a 3D printer is that it is accurate, easy to fabricate of a complex geometry and the ability to create new antennas that cannot be made using conventional fabrication techniques. The ABS material has a tangent loss of 0.0051 and the relative permittivity is 2.74. The thickness of the substrate is 1.25 mm. The simulation has been performed using Computer Simulation Technology (CST). The return loss from simulation software is in good match with measurement which is 12.5dB at 2.44GHz. Hence, from the results obtained, the ABS could be used as a substrate for an antenna.
Volume: 6
Issue: 1
Page: 116-123
Publish at: 2017-04-01

Fouling Prediction using Neural Network Model for Membrane Bioreactor System

10.11591/ijeecs.v6.i1.pp200-206
Nurazizah Mahmod , Norhaliza Abdul Wahab
Membrane bioreactor (MBR) technology is a new method for water and wastewater treatment due to its ability to produce better and high-quality effluent that meets water quality regulations. MBR also is an advanced way to displace the conventional activated sludge (CAS) process. Even this membrane gives better performances compared to CAS, it does have few drawbacks such as high maintenance cost and fouling problem. In order to overcome this problem, an optimal MBR plant operation need to be developed. This can be achieved through an accurate model that can predict the fouling behaviour which could optimise the membrane operation. This paper presents the application of artificial neural network technique to predict the filtration of membrane bioreactor system. The Radial Basis Function Neural Network (RBFNN) is applied to model the developed submerged MBR filtration system. RBFNN model is expected to give good prediction model of filtration system for estimating the fouling that formed during filtration process.
Volume: 6
Issue: 1
Page: 200-206
Publish at: 2017-04-01

Fuzzy Recursive Least-Squares Approach in Speech System Identification: A Transformed Domain LPC Model

10.11591/.v7i2.pp842-849
Kah Wai Cheah , Noor Atinah Ahmad
In speech system identification, linear predictive coding (LPC) model is often employed due to its simple yet powerful representation of speech production model. However, the accuracy of LPC model often depends on the number and quality of past speech samples that are fed into the model; and it becomes a problem when past speech samples are not widely available or corrupted by noise. In this paper, fuzzy system is integrated into the LPC model using the recursive least-squares approach, where the fuzzy parameters are used to characterize the given speech samples. This transformed domain LPC model is called the FRLS-LPC model, in which its performance depends on the fuzzy rules and membership functions defined by the user. Based on the simulations, the FRLS-LPC model with this special property is shown to outperform the LPC model. Under the condition of limited past speech samples, simulation result shows that the synthetic speech produced by the FRLS-LPC model is better than those produced by the LPC model in terms of prediction error. Furthermore with corrupted past speech samples, the FRLS-LPC model is able to provide better reconstructed speech while the LPC model is failed to do so.
Volume: 7
Issue: 2
Page: 842-849
Publish at: 2017-04-01

The Weights Detection of Multi-criteria by using Solver

10.11591/.v7i2.pp858-868
Fachrurrazi Fachrurrazi , Yuwaldi Away , Saiful Husin
Multi criteria, which are generally used for decision analysis, have certain characteristics that relate to the purpose of the decision. Multi criteria have complex structures and have different weights depending upon the consideration of assessors and the purpose of the decision also. Expert’s judgment will be used to detect the criteria weights that applied by assessors. The aim of this study is a model to detect the criteria weights and biases on the subcontractor selection and detecting the significant weights, as decisive criteria. A method, which is used to modeling the weights detection, is the Solver Application. Data, totaling 40 sets, has been collected that consist of the assessor’s assessment and the expert’s judgment. The result is a pattern of weights and biases detection. The proposed model have been able to detect of 20 criteria weights and biases, that consist of 4 criteria in  the total weights of 60% (as decisive criteria) and 16 criteria in the total weights of 40%. A model has been built by training process performed by the Solver, which the result for MSE training is 9.73711e-08 and for MSE validation is 0.00900528. Novelty in the study is a model to detect pattern of weights criteria and biases on subcontractor selection by transferring the expert's judgment using Solver Application.
Volume: 7
Issue: 2
Page: 858-868
Publish at: 2017-04-01

Small Scale Wind Generation System: Part II – A Novel Quasi-Z-Source Inverter and FRG-QZSI-Micro Grid Interface

10.11591/ijape.v6.i1.pp13-30
M. Ramkumar , K. N. Srinivas
This paper proposes modelling, analysis and control of a small scale wind energy conversion system employing a direct driven Flux Reversal Generator (FRG) connected to the micro grid through a quasi-Z-source inverter (QZSI). This entire research is made up of two major parts viz., FRG and QZSI. In the part I report of this research work, the role of FRG has been thoroughly modelled and verified. In this part II, the modelling and analysis of QZSI for this purpose is presented. In addition, the modified space vector PWM (SVPWM) technique is proposed in this paper to satisfy the shoot-through characteristic of QZSI, which is a novel. The interface of FRG and QZSI to inject power in to micro grid has been finally presented. The simulation results are validated with the analytical results. Section I discusses the open loop control of QZSI. The mathematical modelling of QZSI for this purpose is given and analytically validated. This flowed by section II in which the proposed SVPWM is presented. The procedure to obtain triggering pulses using this proposed modulation technique is discussed. Section III presents closed loop control strategies for QZSI. Section IV presents the micro gridinte face and power injection.
Volume: 6
Issue: 1
Page: 13-30
Publish at: 2017-04-01

Novel 9-Steps Automatic AC Voltage Regulator based on Two Step-down Transformers

10.11591/.v7i2.pp576-583
Hussain Attia
A novel design and simulation results of 9-steps automatic AC voltage regulator based on one step-down transformer is presented in this paper. Avoiding the problem of surge at the AC load during controlling jump steps is done through the proposed design. Accurate and smooth controlling function is achieved as well. Instead of the necessity of increasing the number of taps of the used multi tap transformer for wide controlling range of fluctuated AC  supply voltage, the proposed designed adopts using only two step down transformers with 10 Vrms, and 30 Vrms secondary voltages respectively. Through the controlling of the proposed design of AV voltage regulator, the resultant load voltage is equal the AC supply voltage as well as the suitable voltage step which may one of the following voltages; +40V, +30V, +20V, +10V, 0V, -10V, -20V, -30V, -40V. The electronic design is done Multisim software while the electrical circuit connection of step down transformers and relays contacts that is made by using PSIM software for power circuit design.
Volume: 7
Issue: 2
Page: 576-583
Publish at: 2017-04-01

Improved Timing Estimation Using Iterative Normalization Technique for OFDM Systems

10.11591/.v7i2.pp905-911
Suyoto Suyoto , Iskandar Iskandar , Sugihartono Sugihartono , Adit Kurniawan
Conventional timing estimation schemes based on autocorrelation experience performance degradation in the multipath channel environment with high delay spread. To overcome this problem, we proposed an improvement of the timing estimation for the OFDM system based on statistical change of symmetrical correlator. The new method uses iterative normalization technique to the correlator output before the detection based on statistical change of symmetric correlator is applied. Thus, it increases the detection probability and achieves better performance than previously published methods in the multipath environment. Computer simulation shows that our method is very robust in the fading multipath channel
Volume: 7
Issue: 2
Page: 905-911
Publish at: 2017-04-01

A New Method of Insulation Wire for Power Transformers

10.11591/ijape.v6.i1.pp31-34
Khalaf Y. Al-Zyoud
This task go in order to developing a new way of enameled and polyester foil insulation of conductors used in building transformers thermal of class temperature about (150 ℃), the production technology for two types of enameled and polyester foil-insulation conduction are presented. As will as the physical, mechanical and electrical characteristics of conductors in a normal climate N2, in a tropical climate T2 and after 28 cycle at ( 200 ℃ ) are presented.
Volume: 6
Issue: 1
Page: 31-34
Publish at: 2017-04-01

Dielectric Strength Improvement of Natural Ester Insulation Oil via Mixed Antioxidants: Taguchi Approach

10.11591/ijece.v7i2.pp650-658
Sharin Ab Ghani , Zulkarnain Ahmad Noorden , Nor Asiah Muhamad , Hidayat Zainuddin , Muhammad Ilman Hakimi Chua Abdullah , Imran Sutan Chairul
Recently, natural ester insulation (NEI) oils are found to be the best candidates to replace mineral-based insulation oils for oil-immersed transformer applications. However, NEI oils are prone to oxidation due to their poor oxidative stability which can be improved by adding antioxidants into the oils. Latest studies have also shown that the use of selected antioxidants improves the AC breakdown voltage (BdV) of NEI oils. However, the experiments in previous studies were designed using the conventional one-factor-at-a-time (OFAT) method, which requires a large number of samples to be tested in order to determine the optimum response. Thus, a Taguchi-based designed experiment is introduced in this study in replacement of the OFAT method. It is found that this method is capable of determining the optimum concentrations of propyl gallate (PG) and citric acid (CA) which will maximize the AC BdV and improve the oxidative stability of the NEI oil. An AC breakdown voltage test is conducted in accordance with the ASTM D1816 standard using Megger OTS60PB portable oil tester, in which the electrode gap distance is kept fixed at 1 mm. The results indicate that the addition of PG and CA antioxidants increases the AC BdV of the rapeseed-based NEI oil. It is found that the optimum concentrations of PG and CA antioxidant is 0.05 and 0.25 wt.%, respectively. Lastly, the model developed in this study is analysed using analysis of variance (ANOVA). Validation test is also conducted on the optimized NEI oil to determine its dielectric strength and oxidative stability.
Volume: 7
Issue: 2
Page: 650-658
Publish at: 2017-04-01
Show 1528 of 1955

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration