Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

29,061 Article Results

Electric load forecasting using ARIMA model for time series data

10.11591/ijict.v14i3.pp830-836
Balasubramanian Belshanth , Haran Prasad , Thirumalaivasal Devanathan Sudhakar
Any country's economic progress is heavily reliant on its power infrastructure, network, and availability, as energy has become an essential component of daily living in today's globe. Electricity's distinctive quality is that it cannot be stored in huge quantities, which explains why global demand for home and commercial electricity has grown at an astonishing rate. On the other hand, electricity costs have varied in recent years, and there is insufficient electricity output to meet global and local demand. The solution is a series of case studies designed to forecast future residential and commercial electricity demand so that power producers, transformers, distributors, and suppliers may efficiently plan and encourage energy savings for consumers. However, load prognosticasting has been one of the most difficult issues confronting the energy business since the inception of electricity. This study covers a new one–dimensional approach algorithm that is essential for the creation of a short–term load prognosticasting module for distribution system design and operation. It has numerous operations, including energy purchase, generation, and infrastructure construction. We have numerous time series forecasting methods of which autoregressive integrated moving average (ARIMA) outperforms the others. The auto–regressive integrated moving average model, or ARIMA, outperforms all other techniques for load forecasting.
Volume: 14
Issue: 3
Page: 830-836
Publish at: 2025-12-01

The bootstrap procedure for selecting the number of principal components in PCA

10.11591/ijict.v14i3.pp1136-1145
Borislava Toleva
The initial step in determining the number of principal components for both classification and regression involves evaluating how much each component contributes to the total variance in the data. Based on this analysis, a subset of components that explains the highest percentage of variance is typically selected. However, multiple valid combinations may exist, and the final choice is often made manually by the researcher. This study introduces a novel yet straightforward algorithm for the automatic selection of the number of principal components. By integrating ANOVA and bootstrapping with principal component analysis (PCA), the proposed method enables automatic component selection in classification tasks. The algorithm is evaluated using three publicly available datasets and applied with both decision tree and support vector machine (SVM) classifiers. Results indicate that this automated procedure not only eliminates researcher bias in selecting components but also improves classification accuracy. Unlike traditional methods, it selects a single optimal combination of principal components without manual intervention, offering a new and efficient approach to PCAbased model development.
Volume: 14
Issue: 3
Page: 1136-1145
Publish at: 2025-12-01

An artificial intelligent system for cotton leaf disease detection

10.11591/ijict.v14i3.pp950-959
Priyanka Nilesh Jadhav , Pragati Prashant Patil , Nitesh Sureja , Nandini Chaudhari , Heli Sureja
This study aims to develop a deep learning-based system for the detection and classification of diseases in cotton leaves, with the goal of aiding in early diagnosis and disease management, thereby enhancing agricultural productivity in India. The study utilizes a dataset of cotton leaf images, classified into four categories: Fusarium wilt, Curl virus, Bacterial blight, and Healthy leaves. The dataset is used to train and evaluate various CNN models such as basic CNN, VGG19, Xception, InceptionV3, and ResNet50. These models were evaluated on their accuracy in identifying the presence of diseases and classifying cotton leaf images into the respective categories. The models were trained using standard deep learning frameworks and optimized for high performance. The results indicated that ResNet50 achieved the highest accuracy of 100%, followed by InceptionV3 with 98.75%, and VGG19 and Xception both with 97.50%. The basic CNN model showed an accuracy of 96.25%. These models demonstrated strong potential for accurate multi-class classification of cotton leaf diseases. This study emphasizes the potential of deep learning in agricultural diagnostics. Future research can focus on improving model robustness, incorporating larger datasets, and deploying the system for real-time field use to assist farmers in disease management and improving cotton production.
Volume: 14
Issue: 3
Page: 950-959
Publish at: 2025-12-01

Optimizing parameter selection in bidirectional encoder portrayal for transformers algorithm using particle swarm optimization for artificial intelligence generate essay detection

10.11591/ijece.v15i6.pp5543-5554
Tegar Arifin Prasetyo , Rudy Chandra , Wesly Mailander Siagian , Horas Marolop Amsal Siregar , Samuel Jefri Saputra Siahaan
This research proposes a novel method for detecting artificial intelligence (AI)-generated essays by integrating the bidirectional encoder representations from transformers (BERT) model with particle swarm optimization (PSO). Unlike traditional approaches that rely on manual hyperparameter tuning, this study introduces a systematic optimization technique using PSO to improve BERT’s performance in identifying AI-generated content. The key problem addressed is the lack of effective, real-time detection systems that preserve academic integrity amidst rapid AI advancements. This optimization enhances the model’s detection accuracy and operational efficiency. The research dataset consisted of 46,246 essays, which, after data cleaning, were refined to 44,868. The model was then tested on 9,250 essays. Initial evaluations showed BERT's accuracy ranging from 83% to 94%. After being optimized with PSO, the model achieved an accuracy of 98%, an F1-score of 98.31%, precision of 97.75%, and recall of 98.87%. The model was deployed using a FastAPI-based web interface, enabling real-time detection and providing users with an efficient way to quickly verify text authenticity. This research contributes a scalable, automated solution for AI-generated text detection and offers promising implications for its application in various academic and digital content verification contexts.
Volume: 15
Issue: 6
Page: 5543-5554
Publish at: 2025-12-01

6G internet of things networks for remote location surgery also a review on resource optimization strategies, challenges, and future directions

10.11591/ijece.v15i6.pp5968-5977
Md Asif , Tan Kaun Tak , Pravin R. Kshirsagar
Remote location surgery presents stringent requirements for wireless communication, particularly in terms of reliability, speed, and low latency. The emergence of sixth-generation (6G) wireless networks is expected to address these challenges effectively. With the rapid expansion of internet of things (IoT) applications in healthcare, maintaining real-time connectivity has become essential. Ensuring such performance in 6G-enabled IoT networks relies heavily on the implementation of advanced resource optimization techniques. Recent studies have focused on improving key performance metrics, including latency, reliability, energy efficiency, spectral efficiency, data rate, and bandwidth usage. Comprehensive reviews of these techniques reveal a growing emphasis on multi-objective optimization strategies to balance conflicting requirements. Research has also highlighted limitations in existing approaches, suggesting the need for further innovation, particularly for mission-critical applications like remote surgery. Within this context, 6G IoT systems have demonstrated the potential to maintain high data rates and stable throughput, both of which are essential for safe and responsive surgical operations conducted over long distances. These findings underscore the importance of continued development in resource management to fully enable remote healthcare delivery through advanced wireless technologies.
Volume: 15
Issue: 6
Page: 5968-5977
Publish at: 2025-12-01

Design and experimental validation of a microstrip Vivaldi antenna-based system for breast tumor detection

10.11591/ijece.v15i6.pp5497-5505
Samiya Qanoune , Hassan Ammor , Zakaria Er-Reguig , Zouhair Guennoun
Breast cancer remains one of the leading causes of death among women worldwide, highlighting the critical need for accurate, non-invasive, and cost-effective diagnostic solutions. In light of this, microwave imaging has surfaced as a promising alternative to conventional diagnostic methods. This approach leverages its capability to differentiate between healthy and cancerous tissues by examining their dielectric properties. This study presents the design, implementation, and experimental assessment of a Vivaldi antenna-based system aimed at breast cancer detection. The antenna is designed to operate within the ultra-wideband frequency range, which facilitates high-resolution imaging and effective deep tissue penetration. Data collected from tissue-mimicking phantoms reveals the system’s proficiency in identifying anomalies, showcasing a significant contrast between malignant and normal tissue regions. We analyze various performance metrics, including signal reflection, penetration depth, and imaging resolution to substantiate the system's efficacy. The results underline the significant potential of Vivaldi antennas in improving early- stage breast cancer detection, thus contributing to advancements in microwave imaging technology.
Volume: 15
Issue: 6
Page: 5497-5505
Publish at: 2025-12-01

Securing healthcare data and optimizing digital marketing through machine learning: the CAML-EHDS framework

10.11591/ijece.v15i6.pp5728-5745
Fathi Abderrahmane , Mouyassir Kawtar , Ali Waqas , Fandi Fatima Zahra , Kartit Ali
Current healthcare data systems face major challenges in preventing unauthorized access, ensuring compliance with data privacy regulations, and enabling intelligent secondary use of patient information. To address these issues, we introduce cluster-based analysis with machine learning for enhanced healthcare data security (CAML-EHDS), a unified framework that combines homomorphic encryption, attribute-based elliptic curve cryptography (ECC), and semantic clustering with machine learning. CAML-EHDS improves upon existing models by offering fine-grained access control, adaptive threat detection, and data-driven insights while preserving privacy. Experimental results show that CAML-EHDS achieves up to 98% classification accuracy with low node count, and maintains 94% accuracy even at high node distribution levels, while ensuring encryption time under 24 seconds and acceptable data loss below 29%. Moreover, in comparative analysis with state-of-the-art models (support vector machine (SVM), random forest (RF), and decision tree (DT)), CAML-EHDS outperforms all in key metrics with an accuracy of 0.96. These results demonstrate CAML-EHDS’s potential for real-world deployment in secure, scalable, and intelligent healthcare environments, including privacy-aware digital marketing integration.
Volume: 15
Issue: 6
Page: 5728-5745
Publish at: 2025-12-01

Image-based assessment of cattle manure-induced soil erosion in grazing systems

10.11591/ijece.v15i6.pp5360-5370
Cristian Gómez-Guzmán , Yeison Alberto Garcés-Gómez
Extensive livestock farming significantly impacts soil erosion, necessitating accurate monitoring and assessment to mitigate environmental damage and enhance sustainable pasture management. This study employs unsupervised classification of high-resolution drone imagery to detect and quantify soil erosion associated with cattle manure in pastures, focusing on evaluating classification algorithms, identifying relevant spectral and textural features, and quantifying the extent and severity of erosion. The results demonstrate the effectiveness of unsupervised classification in identifying erosion zones and their impact on soil health and water quality. Field validation confirms the accuracy of the analysis, emphasizing the need for sustainable management practices such as controlled manure redistribution and soil conservation to mitigate erosion and protect natural resources. This approach offers practical tools for mitigating the environmental impacts of semi-extensive livestock farming and promoting more sustainable management. The findings provide practical recommendations for sustainable pasture management, contributing to environmental conservation and the long-term health of live-stock systems.
Volume: 15
Issue: 6
Page: 5360-5370
Publish at: 2025-12-01

Integrity verification of medical images in internet of medical things for smart cities using data hiding scheme

10.11591/ijece.v15i6.pp5770-5781
Kilari Jyothsna Devi , Ravuri Daniel , Bode Prasad , Mohamad Khairi Ishak , Dorababu Sudarsa , Pasam Prudhvi Kiran
As technology has advanced, the internet of medical things (IoMT) has become incredibly useful. It is used to transmit a wide variety of medical images. Sensitive patient data may be altered during transmission or subject to illegal access. To overcome all of these challenges and preserve the integrity of medical images while transmission over IoMT, a blind region-based data concealing approach called medical image watermarking (MIW) is suggested. The region of interest (ROI) and region of non-interest (RONI) are the two sections that make up the medical image. The aim of the suggested MIW technique is to prevent transmission-related manipulation of medical image ROI. To provide high imperceptibility and resilience, confined integrity verification and recovery bits (CIVRB) bits are embedded in the RONI using hybrid integer wavelet transform–singular value decomposition (IWT-SVD). According to the experimental results, the suggested system is highly imperceptible (average peak signal-to-noise ratio (PSNR)=56dB), robust (average NC=0.99), and exhibits integrity verification accuracy of over 98% against a variety of image processing attacks. In terms of several watermarking properties, the proposed technique performs over state-of-the-art schemes. This method offers a dependable framework for protecting medical images in real-time IoMT applications and is suitable for smart healthcare environments.
Volume: 15
Issue: 6
Page: 5770-5781
Publish at: 2025-12-01

Optimizing short-term energy demand forecasting: a comprehensive analysis using autoregressive integrated moving average method

10.11591/ijece.v15i6.pp5924-5933
Firman Aziz , Jeffry Jeffry , Misbahuddin Buang , Supriyadi La Wungo , Nasruddin Nasruddin
This study addresses the critical gap in short-term electricity demand forecasting in South Sulawesi, where inconsistencies between projected and actual peak loads hinder daily operational planning, system stability, and investment efficiency. While previous studies have applied approaches such as fuzzy logic, ARIMA-ANN, and hybrid models, few have focused on simple, robust ARIMA-based models validated across different time spans for daily operational use. To address this, the autoregressive integrated moving average (ARIMA) model is implemented within the Box-Jenkins framework, using automated model selection through the pmdarima library and Akaike’s information criterion (AIC) to identify optimal parameter configurations. The study analyzes daily peak load data from 2018 to 2023, producing realistic forecasts with high accuracy. The selected ARIMA model achieves a mean absolute percentage error (MAPE) of 1.91% and a root mean square error (RMSE) of 38.123, demonstrating its effectiveness in capturing short-term load trends. These results confirm the suitability of ARIMA for short-term forecasting in energy systems and its potential to enhance operational decision-making, reduce forecasting errors, and improve investment planning. The study also establishes a methodological foundation for future development, including the integration of ARIMA with machine learning and the use of extended datasets to support strategic energy management.
Volume: 15
Issue: 6
Page: 5924-5933
Publish at: 2025-12-01

Enhancing semantic segmentation with a boundary-sensitive loss function: a novel approach

10.11591/ijece.v15i6.pp5327-5335
Ganesh R. Padalkar , Madhuri B. Khambete
Semantic segmentation is crucial step in autonomous driving, medical imaging, and scene understanding. Traditional approaches leveraging manually extracted pixel properties and probabilistic models, have achieved reasonable performance but suffer from limited generalization and the need for expert-driven feature selection. The rise of deep learning architectures has significantly improved segmentation accuracy by enabling automatic feature extraction and capturing intricate object details. However, these methods still face challenges, including the need for large datasets, extensive hyperparameter tuning, and careful loss function selection. This paper proposes a novel boundary-sensitive loss function, which combines region loss and boundary loss, to enhance both region consistency and edge delineation in segmentation tasks. Implemented within a modified SegNet framework, the approach proposed in the paper is evaluated with the semantic boundary dataset (SBD) dataset using standard segmentation metrics. Experimental results indicate improved segmentation accuracy, substantiating to proposed method.
Volume: 15
Issue: 6
Page: 5327-5335
Publish at: 2025-12-01

Intuitive effectiveness degree of research methodologies for spectrum sensing in cognitive radio network

10.11591/ijece.v15i6.pp5699-5707
Pushpa Yellappa , Dr.Keshavamurthy Keshavamurthy
The phenomenon of spectrum sensing plays an essential role in cognitive radio network (CRN) that is performed in real-time for better adaptability to dynamic usage of spectrum. However, efficient decision-making is often noted to be affected by dynamic environmental condition, interference, and noise leading to declination in performance. In recent times, there are proposals for various methodologies addressing such issues targeting towards improving spectrum sensing along with machine learning and energy detection approach, which is gaining its pace for technical research implementation. Irrespective of this advancement, ambiguity shrouds regarding the contrast effectiveness associated with these methods and their appropriateness in different situation. Hence, this manuscript presents a comprehensive and yet crisp review work to offer concise assessment of latest methodologies towards spectrum sensing used in CRN ecosystem. The paper has an inclusion of existing techniques, presents their potentials and shortcomings, exhibited evolving trends of research, extracts key gaps and challenges. The prime intention of this review work is towards guiding the future researchers and scholars by facilitating deeper insight towards the recent state of technologies in spectrum sensing.
Volume: 15
Issue: 6
Page: 5699-5707
Publish at: 2025-12-01

An ensemble machine learning based model for prediction and diagnosis of diabetes mellitus

10.11591/ijece.v15i6.pp5347-5359
Moataz Mohamed El Sherbiny , Asmaa Hamdy Rabie , Mohamed Gamal Abdel Fattah , Ali Elsherbiny Taki Eldin , Hossam El-Din Mostafa
Diabetes mellitus (DM) is a chronic metabolic disorder that poses significant health risks and global economic burdens. Early prediction and accurate diagnosis are crucial for effective management and treatment. This study presents an ensemble machine learning-based model designed to predict and diagnose Diabetes Mellitus using clinical and demographic data. The proposed approach integrates multiple machine learning algorithms, including random forest (RF), extreme gradient boosting (XGB), and logistic regression (LR), to leverage their individual strengths and enhance the entire performance. The ensemble model was trained and validated on multiple comprehensive datasets. Performance measures demonstrate the robustness of proposed model and its reliability in distinguishing diabetic cases from non-diabetic cases after applying several preprocessing steps. This work ensures the capability of machine learning in advancing healthcare by providing efficient, data-driven tools for diabetes management, aiding clinicians in early diagnosis, and contributing to personalized treatment strategies. Comparative analysis against standalone models highlights the superior predictive capabilities of the ensemble approach. Results had shown that ensemble model achieved an accuracy of 96.88% and precision of 89.85% outperforming individual classifiers.
Volume: 15
Issue: 6
Page: 5347-5359
Publish at: 2025-12-01

Computationally efficient pixelwise deep learning architecture for accurate depth reconstruction for single-photon LiDAR

10.11591/ijece.v15i6.pp5934-5941
Yu Zhang , Yiming Zheng
This work introduces a compact deep learning architecture for depth image reconstruction from time-resolved single-photon histograms. Unlike most deep learning approaches that mainly rely on 3D convolutions, our network is implemented purely with 1D convolutions without assistance from other sensors or pre-processing. Both synthetic and real datasets were used to evaluate the accuracy of our model for challenging signal-to-background ratios (SBRs), ranging from 5:1 to 1:1. Conventional maximum likelihood (ML) and another photon-efficient optimization-based algorithm were adopted for performance comparisons. Results from synthetic data show that our model achieves lower mean absolute error (MAE). Additionally, results from real data indicate that our model exhibits better reconstruction for high-ambient effects and provides better spatial information. Unlike existing 3D deep learning models, we process pixel-wise histograms continuously, rather than splitting the point cloud and stitching them afterward, which saves memory and computational resources, thereby laying a foundation for real-world embedded applications.
Volume: 15
Issue: 6
Page: 5934-5941
Publish at: 2025-12-01

Power loss reduction and stability enhancement of power system through transmission network reconfiguration

10.11591/ijece.v15i6.pp6012-6026
Titus Terwase Akor , Theophilu Chukwudolue Madueme , Chibuike Peter Ohanu , Tole Sutikno
The power network faces several challenges as electricity usage rises and the frequency of partial and total grid disruptions is of great concern. This paper addresses the problem of voltage instability and high-power losses in transmission network, which threatens the stability of the power grid. The MATLAB R2023a/MATPOWER 5.0 is used to develop a model and analyze using the Newton-Raphson load flow method. The analysis reveals a marginal voltage violation at Bus 13 (below 0.95 p.u.). To enhance stability and efficiency, the network was reconfigured using a hybrid whale algorithm and particle swarm optimization (WAPSO) approach, incorporating new transmission lines (5-8 and 13-14) to improve connectivity and reduce congestion. The reconfiguration reduced active power losses by 29.5% (from 36.013 to 25.371 MW) and reactive power losses by 29.8% (from 301.30 to 211.59 MVAr). The system demonstrated first swing stability, with rotor angles remaining below π/2 (1.5669 rad maximum deviation) and fault clearance within the critical clearing time (0.2 s). Optimized exciter gains and a damping coefficient of 1.5 p.u. ensured effective oscillation suppression and stable generator voltages at 1.05 p.u. The hybrid WAPSO approach proved effective in optimizing voltage and rotor angle stability, enabling the network to meet a 24.086 p.u. load demand while enhancing overall grid reliability.
Volume: 15
Issue: 6
Page: 6012-6026
Publish at: 2025-12-01
Show 8 of 1938

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration