Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

29,325 Article Results

Quality of Service based Task Scheduling Algorithms in Cloud Computing

10.11591/.v7i2.pp1088-1095
Sirisha Potluri , Katta Subba Rao
In cloud computing resources are considered as services hence utilization of the resources in an efficient way is done by using task scheduling and load balancing. Quality of service is an important factor to measure the trustiness of the cloud. Using quality of service in task scheduling will address the problems of security in cloud computing. This paper studied quality of service based task scheduling algorithms and the parameters used for scheduling. By comparing the results the efficiency of the algorithm is measured and limitations are given. We can improve the efficiency of the quality of service based task scheduling algorithms by considering these factors arriving time of the task, time taken by the task to execute on the resource and the cost in use for  the communication.
Volume: 7
Issue: 2
Page: 1088-1095
Publish at: 2017-04-01

p-Laplace Variational Image Inpainting Model Using Riesz Fractional Differential Filter

10.11591/ijece.v7i2.pp850-857
Sridevi Gamini , S Srinivas Kumar
In this paper, p-Laplace variational image inpainting model with symmetric Riesz fractional differential filter is proposed. Variational inpainting models are very useful to restore many smaller damaged regions of an image. Integer order variational image inpainting models (especially second and fourth order) work well to complete the unknown regions. However, in the process of inpainting with these models, any of the unindented visual effects such as staircasing, speckle noise, edge blurring, or loss in contrast are introduced. Recently, fractional derivative operators were applied by researchers to restore the damaged regions of the image. Experimentation with these operators for variational image inpainting led to the conclusion that second order symmetric Riesz fractional differential operator not only completes the damaged regions effectively, but also reducing unintended effects. In this article, The filling process of damaged regions is based on the fractional central curvature term. The proposed model is compared with integer order variational models and also GrunwaldLetnikov fractional derivative based variational inpainting in terms of peak signal to noise ratio, structural similarity and mutual information.
Volume: 7
Issue: 2
Page: 850-857
Publish at: 2017-04-01

5G Fixed Beam Switching on Microstrip Patch Antenna

10.11591/ijece.v7i2.pp975-980
Low Ching Yu , Muhammad Ramlee Kamarudin
5G technology is using millimeter-wave band to improve the wireless communication system.  However, narrow transmitter and receiver beams have caused the beam coverage area to be limited. Due to propagation limitations of mm wave band, beam forming technology with multi-beam based communication system, has been focused to overcome the problem. In this letter, a fixed beam switching method is introduced. By changing the switches, four different configurations of patch array antennas are designed to investigate their performances in terms of radiation patterns, beam forming angle, gain, half-power bandwidth and impedance bandwidth at 28 GHz operating frequency for 5G application. Mircostrip antenna is preferred due to its low profile, easy in feeding and array configurations. Three different beam directions had been formed at -15°, 0°, and 15° with half-power bandwidth of range 45˚ to 50˚.
Volume: 7
Issue: 2
Page: 975-980
Publish at: 2017-04-01

Voltage Compensation In Wind Power System Using STATCOM Controlled By Soft Computing Techniques

10.11591/ijece.v7i2.pp667-680
Bineeta Mukhopadhyay , Rajib Kumar Mandal , Girish Kumar Choudhary
When severe voltage sags occur in weak power systems associated with grid-connected wind farms employing doubly fed induction generators, voltage instability occurs which may lead to forced disconnection of wind turbine. Shunt flexible AC transmission system devices like static synchronous compensator (STATCOM) may be harnessed to provide voltage support by dynamic injection of reactive power. In this work, the STATCOM provided voltage compensation at the point of common coupling in five test cases, namely, simultaneous occurrence of step change (drop) in wind speed and dip in grid voltage, single line to ground, line to line, double line to ground faults and sudden increment in load by more than a thousand times. Three techniques were employed to control the STATCOM, namely, fuzzy logic, particle swarm optimization and a combination of both. A performance comparison was made among the three soft computing techniques used to control the STATCOM on the basis of the amount of voltage compensation offered at the point of common coupling. The simulations were done with the help of SimPowerSystems available with MATLAB / SIMULINK and the results validated that the STATCOM controlled by all the three techniques offered voltage compensation in all the cases considered.
Volume: 7
Issue: 2
Page: 667-680
Publish at: 2017-04-01

Parametric Comparison of K-means and Adaptive K-means Clustering Performance on Different Images

10.11591/ijece.v7i2.pp810-817
Madhusmita Sahu , K. Parvathi , M. Vamsi Krishna
Image segmentation takes a major role to analyzing the area of interest in image processing. Many researchers have used different types of techniques to analyzing the image. One of the widely used techniques is K-means clustering. In this paper we use two algorithms K-means and the advance of K-means is called as adaptive K-means clustering. Both the algorithms are using in different types of image and got a successful result. By comparing the Time period, PSNR and RMSE value from the result of both algorithms we prove that the Adaptive K-means clustering algorithm gives a best result as compard to K-means clustering in image segmentation.    
Volume: 7
Issue: 2
Page: 810-817
Publish at: 2017-04-01

Detection of Rogue Access Point in WLAN using Hopfield Neural Network

10.11591/ijece.v7i2.pp1060-1070
Menal Dahiya , Sumeet Gill
The serious issue in the field of wireless communication is the security and how an organization implements the steps against security breach. The major attack on any organization is Man in the Middle attack which is difficult to manage. This attack leads to number of unauthorized access points, called rogue access points which are not detected easily. In this paper, we proposed a Hopfield Neural Network approach for an automatic detection of these rogue access points in wireless networking. Here, we store the passwords of the authentic devices in the weight matrix format and match the patterns at the time of login. Simulation experiment shows that this method is more secure than the traditional one in WLAN.
Volume: 7
Issue: 2
Page: 1060-1070
Publish at: 2017-04-01

Performance of Non-Uniform Duty-Cycled ContikiMAC in Wireless Sensor Networks

10.11591/.v7i2.pp942-949
Nur Rabiul Liyana Mohamed , Ansar Jamil , Lukman Hanif Audah Audah , Jiwa Abdullah , Rozlan Alias
Wireless Sensor Network (WSN) is a promising technology in Internet of Things (IoTs) because it can be implemented in many applications. However, a main drawback of WSN is it has limited energy because each sensor node is powered using batteries. Therefore, duty-cycle mechanisms are introduced to reduce power consumption of the sensor nodes by ensuring the sensor nodes in the sleep mode almost of the time in order to prolong the network lifetime. One of the de-facto standard of duty-cycle mechanism in WSN is ContikiMAC, which is the default duty-cycle mechanism in Contiki OS. ContikiMAC ensures nodes can participate in network communication yet keep it in sleep mode for roughly 99\% of the time. However, it is found that the ContikiMAC does not perform well in dynamic network conditions. In a bursty network, ContikiMAC provides a poor performance in term of packet delivery ratio, which is caused by congestion. One possible solution is ContikiMAC should increase its duty-cycle rate in order to support the bursty traffic. This solution creates a non-uniform duty-cycle rates among the sensor nodes in the network. This work aims to investigate the effect of non-uniform duty-cycle rates on the performance on ContikiMAC. Cooja simulator is selected as the simulation tool. Three different simulation scenarios are considered depending on the Clear Channel Assessment Rate (CCR) configurations: a low uniform CCR value (Low-CCR), a high uniform CCR value (High-CCR) and non-uniform CCR values (Non-uniform-CCR). The simulation results show that the Low-CCR scenario provides the worst performance of PDR. On the other hand, the High-CCR scenario provides the best performance of PDR. The Non-uniform-CCR provides PDR in between of Low-CCR and High-CCR.
Volume: 7
Issue: 2
Page: 942-949
Publish at: 2017-04-01

Optimizing Tri-Core Permanent-Magnet-Linear-Generator Direct-Drive Wave-Energy-Conversion System Design for Sea Wave Characteristics in South Coast Yogyakarta

10.11591/ijece.v7i2.pp610-618
Fransisco Danang Wijaya , Sarjiya Sarjiya , Muhammad Rifa'i Putra Sugita
According to statistical data, the south coast Yogyakarta has significant ocean wave height which can be used to generate electricity by using wave-energy-converter system. One of the simplest way to convert wave energy to electricity is using direct-drive wave-energy-conversion (WEC) system with permanent-magnet-linear-generator (PMLG). This method is simple because it doesn’t need to convert linear motion to rotational motion. However, PMLG has large electric power losses, has great weight in both of the stator and rotor, and expensive to make. In this paper, a tri-core PMLG was designed. The electric power losses in the winding, translator weight, and manufacturing cost were ideally minimized using multiobjective optimization combined with simulated annealing (SA) algorithm. Then, the design was verified using finite element analysis. The optimized design of this PMLG was simulated using sinusoidal ocean waves which usually occur in the south coast of Yogyakarta to analyze the performance of this linear generator. Simulation result has been shown that this generator can generate 911 watt peak output power at the rated condition and at the optimum load with 81.14% efficiency. This confirms that the optimized design of PMLG is suitable for direct-drive WEC with low power losses and manufacturing cost.
Volume: 7
Issue: 2
Page: 610-618
Publish at: 2017-04-01

A New Instrumentation Amplifier Architecture Based on Differential Difference Amplifier for Biological Signal Processing

10.11591/ijece.v7i2.pp759-766
Zainul Abidin , Koichi Tanno , Shota Mago , Hiroki Tamura
In this paper, a new Instrumentation Amplifier (IA) architecture for biological signal pro-cessing is proposed. First stage of the proposed IA architecture consists of fully balance differential difference amplifier and three resistors. Its second stage was designed by using differential difference amplifier and two resistors. The second stage has smaller number of resistors than that of conventional one. The IA architectures are simulated and compared by using 1P 2M 0:6-m CMOS process. From HSPICE simulation result, lower common-mode voltage can be achieved by the proposed IA architecture. Average common-mode gain (Ac) of the proposed IA architecture is 31:26 dB lower than that of conventional one under 3% resistor mismatches condition. Therefore, the Ac of the proposed IA architecture is more insensitive to resistor mismatches and suitable for biological signal processing.
Volume: 7
Issue: 2
Page: 759-766
Publish at: 2017-04-01

Implementation of Algorithm for Vehicle Anti-Collision Alert System in FPGA

10.11591/.v7i2.pp775-783
Aiman Zakwan Jidin , Lim Siau Li , Ahmad Fauzan Kadmin
Vehicle safety has becoming one of the important issues nowadays, due to the fact the number of road accidents, which cause injuries, deaths and also damages, keeps on increasing. One of the main factors which contribute to these accidents are human's lack of awareness and also carelessness. This paper presents the development and implementation of an algorithm to be utilized for vehicle anti-collision alert system, which may be useful to reduce the occurrence of accidents. This algorithm, which is to be deployed with the front sensors of the vehicle, is capable of alerting any occurrence of sudden slowing or static vehicles ahead, by sensing the rate of distance change. Furthermore, it also triggers an alert if the driver is breaching the safe distance from the vehicle ahead. This algorithm has been successfully implemented in Altera DE0 FPGA and its functionality was validated via hardware experimental tests.
Volume: 7
Issue: 2
Page: 775-783
Publish at: 2017-04-01

Measuring Cardiorespiratory Information in Sitting Position using Multiple Piezoelectric Sensors

10.11591/ijeecs.v6.i1.pp132-138
Tomohiko Igasaki , Makiko Kobayashi , Makiko Kobayashi
We have been studying equipment to easily acquire cardiorespiratory information at home using piezoelectric sensors arranged on the seat surface of a chair. In our previous study, we suggested that the cardiac and respiratory components could be extracted by executing template matching using a two-dimensional cross-correlation function for the signals that were obtained from the piezoelectric sensors. However, there was a difficulty with the signal extraction, depending on the seating position. Therefore, in this study, we examined the measurement of the heartbeat and breathing interval using independent component analysis and multiple piezoelectric sensors. Moreover, the heartbeat and breathing intervals that were obtained from the extracted cardiorespiratory components using our developed automatic decision method were compared with those obtained from electrocardiogram and pneumogram. As a result, it was found that we could achieve better error rates (0.93±0.44% and 5.23±3.04% for the heartbeat and respiratory intervals, respectively) than in our previous study.
Volume: 6
Issue: 1
Page: 132-138
Publish at: 2017-04-01

Size Reduction and Gain Enhancement of a Microstrip Antenna using Partially Defected Ground Structure and Circular/Cross Slots

10.11591/ijece.v7i2.pp894-898
Nada N. Tawfeeq
Microwave engineers have been known to designedly created defects in the shape of carved out patterns on the ground plane of microstrip circuits and transmission lines for a long time, although their implementations to the antennas are comparatively new. The term Defected Ground Structure (DGS), precisely means a single or finite number of defects. At the beginning, DGS was employed underneath printed feed lines to suppress higher harmonics. Then DGS was directly integrated with antennas to improve the radiation characteristics, gain and to suppress mutual coupling between adjacent elements. Since then, the DGS techniques have been explored extensively and have led to many possible applications in the communication industry. The objective of this paper is to design and investigate microstrip patch antenna that operates at 2.4 GHz for Wireless Local Area Network WLAN IEEE 802.11b/g/n, ,Zigbee, Wireless HART, Bluetooth and several proprietary technologies that operate in the 2.4 GHz band. The design of the proposed antenna involves using partially Defected Ground Structure and circular/cross slots and compare it to the traditional microstrip patch antenna.  The results show improvement in both the gain of 3.45 dB and the S11 response of -22.3 dB along with reduction in the overall dimensions of the antenna. As a conclusion, the performance of the antenna has been improved through the incorporation with the DGS and slots structures regarding the S11 response and the gain. The proposed antenna become more compact. Finally, the radiation pattern of proposed antenna has remained directional in spite of adding slots on the ground plane.
Volume: 7
Issue: 2
Page: 894-898
Publish at: 2017-04-01

Design of Pervasive Discovery, Service and Control for Smart Home Appliances: An Integration of Raspberry Pi, UPnP Protocols and Xbee

10.11591/ijece.v7i2.pp1012-1022
Sabriansyah Rizqika Akbar , Maystya Tri Handono , Achmad Basuki
Pervasive technology is an important feature in smart home appliances control. With pervasive technology, the user is able to discover and control every device and each service without initialization configuration and setup. Since single-board computer often used in smart home appliances, combining pervasive technology and microcomputer/single-board computer will be important to be applied and make a possibility to create a smart home system based on the requirement of it users that will be beneficial for the smart home users and the developers. This paper proposed a design of pervasive discovery, service, and control system for smart home appliances by integrating Raspberry Pi, UPnP protocols, and Xbee that able to control an RGB LED services such as switching, dimming, change color and read a temperature sensor as an example in smart home appliances. This paper enriched the raspberry Pi GPIO function to be able to control via TCP/IP network with UPnP protocol and receive information from a temperature sensor node via Xbee communication. Service control time is measured with UPnP round trip time by subtracting HTTP response arrival with HTTP request time. GPIO processing time measured at the application level by counting a timer that starts before GPIO process and ended after GPIO successfully executed.
Volume: 7
Issue: 2
Page: 1012-1022
Publish at: 2017-04-01

Lyot-based Multi-wavelength Fiber Laser

10.11591/.v7i2.pp981-985
Suhairie Saleh , N. A. Cholan , A. H. Sulaiman , M. A. Mahdi
A multi-wavelength fiber laser which is based on a Lyot filter is experimentally demonstrated. A combination of four-wave mixing in a highly nonlinear fiber and Lyot filter mechanism in the laser cavity is able to generate multi-wavelength with relatively high extinction ratio (ER). At the input current of 100mA, six laser lines with ER more than 5 dB are successfully generated. The wavelength spacing for the multi-wavelength is 0.15nm, corresponding to the characteristics of the Lyot filter used.
Volume: 7
Issue: 2
Page: 981-985
Publish at: 2017-04-01

Optimizing Tri-Core Permanent-Magnet-Linear-Generator Direct-Drive Wave-Energy-Conversion System Design for Sea Wave Characteristics in South Coast Yogyakarta

10.11591/.v7i2.pp610-618
Fransisco Danang Wijaya , Sarjiya Sarjiya , Muhammad Rifa'i Putra Sugita
According to statistical data, the south coast Yogyakarta has significant ocean wave height which can be used to generate electricity by using wave-energy-converter system. One of the simplest way to convert wave energy to electricity is using direct-drive wave-energy-conversion (WEC) system with permanent-magnet-linear-generator (PMLG). This method is simple because it doesn’t need to convert linear motion to rotational motion. However, PMLG has large electric power losses, has great weight in both of the stator and rotor, and expensive to make. In this paper, a tri-core PMLG was designed. The electric power losses in the winding, translator weight, and manufacturing cost were ideally minimized using multiobjective optimization combined with simulated annealing (SA) algorithm. Then, the design was verified using finite element analysis. The optimized design of this PMLG was simulated using sinusoidal ocean waves which usually occur in the south coast of Yogyakarta to analyze the performance of this linear generator. Simulation result has been shown that this generator can generate 911 watt peak output power at the rated condition and at the optimum load with 81.14% efficiency. This confirms that the optimized design of PMLG is suitable for direct-drive WEC with low power losses and manufacturing cost.
Volume: 7
Issue: 2
Page: 610-618
Publish at: 2017-04-01
Show 1526 of 1955

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration