Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,188 Article Results

Recognizing AlMuezzin and his Maqam using deep learning approach

10.11591/ijeecs.v39.i2.pp1360-1372
Nahlah Mohammad Shatnawi , Khalid M. O. Nahar , Suhad Al-Issa , Enas Ahmad Alikhashashneh
Speech recognition is an important topic in deep learning, especially to Arabic language in an attempt to recognize Arabic speech, due to the difficulty of applying it because of the nature of the Arabic language, its frequent overlap, and the lack of available sources, and some other limitations related to the programming matters. This paper attempts to reduce the gap that exists between speech recognition and the Arabic language and attempts to address it through deep learning. In this paper, the focus is on Call for Prayer (Aladhan: ناذآلا ) as one of the most famous Arabic words, where its form is stable, but it differs in the notes and shape of its sound, which is known as the phonetic Maqam (Maqam: ماقملا  يتوصلا ). In this paper, a solution to identify the voice of AlMuezzin ( نذؤملا ), recognize AlMuezzin, and determine the form of the Maqam through VGG-16 model presented. The VGG-16 model examined with 4 extracted features: Chroma feature, LogFbank feature, MFCC feature, and spectral centroids. The best result obtained was with chroma features, where the accuracy of Aladhan recognition reached 96%. On the other hand, the classification of Maqam with the highest accuracy reached of 95% using spectral centroids feature.
Volume: 39
Issue: 2
Page: 1360-1372
Publish at: 2025-08-01

Hierarchical enhanced deep encoder-decoder for intrusion detection and classification in cloud IoT networks

10.11591/ijeecs.v39.i2.pp1176-1188
Ramya K. M. , Rajashekhar C. Biradar
Securing cloud-based internet of things (IoT) networks against intrusions and attacks is a significant challenge due to their complexity, scale, and the diverse nature of connected devices. IoT networks consist of billions of devices, computer servers, data transmission networks, and application computers, all communicating vast amounts of data that must adhere to various protocols. This study introduces a novel approach, termed hierarchical enhanced deep encoder-decoder with adaptive frequency decomposition (HED-EDFD), and is designed to address these challenges within cloud-based IoT environments. The HED-EDFD methodology integrates adaptive frequency decomposition, specifically adaptive frequency decomposition, with a deep encoder-decoder model. This integration allows for the extraction and utilization of frequency domain features from time-sequence IoT data. By decomposing data into multiresolution wavelet coefficients, the model captures both high-frequency transient changes and low-frequency trends, essential for detecting potential intrusions. The deep encoder-decoder model, enhanced with deep contextual attention mechanisms, processes these features to identify complex patterns indicative of malicious activities. The hierarchical structure of the approach includes a hierarchical wavelet-based attention mechanism, which enhances the accuracy and robustness of feature extraction and classification. To address the issue of imbalanced intrusion data, a cosine-based SoftMax classifier is employed, ensuring effective recognition of minority class samples.
Volume: 39
Issue: 2
Page: 1176-1188
Publish at: 2025-08-01

Performance evaluation of a photovoltaic system with phase change material in Guwahati

10.11591/ijeecs.v39.i2.pp737-746
Pallavi Roy , Bani Kanta Talukdar
Recently, there has been a lot of interest in solar photovoltaic (PV) technology as a clean and renewable energy source. The operating temperature of PV modules significantly impacts their performance; as the temperature rises, the modules perform worse. The phase change material (PCM) paraffin wax has been used to cool a PV system passively. The experiment was carried out during summer over three months, viz. April, May, and June when relative humidity was around 80.75% to 86.5% with two identical 20-watt PV panels in Guwahati, India (26.1332° North and 91.6214° East). One panel was coated with PCM, while the other panel functioned as a point of reference. The study reveals an impressive result: the output power produced by the system with PCM was 9.8%, 13.1%, and 10.3% greater than the reference PV, while the surface temperature had been lowered by 21.6%, 26.2%, and 30.6% in the three respective months. High humidity delays the release of latent heat of paraffin wax and hence improves its thermal conductivity. This study adds to the continuing efforts to promote sustainable energy solutions and creates new opportunities to enhance the performance of PV systems.
Volume: 39
Issue: 2
Page: 737-746
Publish at: 2025-08-01

Optimization of IoT-based monitoring system for automatic power factor correction using PZEM-004T sensor

10.11591/ijeecs.v39.i2.pp860-873
Maman Somantri , Mochamad Rizal Fauzan , Irgi Surya
Power factor correction (PFC) is crucial for improving energy efficiency and reducing excessive power consumption, especially in inductive loads commonly found in household and industrial environments. Conventional PFC methods often rely on manual capacitor switching, which is inefficient and impractical for real-time applications. This study proposes an IoT-based automatic power factor monitoring and correction system that dynamically adjusts the power factor using real-time data analysis. The system integrates NodeMCU ESP32 and the PZEM-004T sensor to monitor electrical parameters and automatically switch capacitors based on power factor conditions. The research follows the ADDIE approach (analysis, design, development, implementation, evaluation) to ensure a structured development process. Experimental results demonstrate an average power factor improvement of 48.77% and a reduction in current consumption by 39.90%, significantly enhancing energy efficiency. The system's web-based interface allows real-time monitoring with an average data transmission response time of 207.67 ms, ensuring efficient remote management. Compared to existing systems, the proposed approach eliminates manual intervention and optimizes PFC adaptively. Future research should focus on expanding system reliability, testing on larger-scale applications, and integrating artificial intelligence (AI) for predictive power factor adjustments.
Volume: 39
Issue: 2
Page: 860-873
Publish at: 2025-08-01

Analytical study of a single slope solar still: experimental evaluation

10.11591/ijeecs.v39.i2.pp850-859
M. Bhanu Prakash Sharma , D. Arumuga Perumal , M. S. Sivagama Sundari , Ilango Karuppasamy
Even though water covers the surface of the Earth in three quarters, many nations face shortages of drinkable water due to rapid global population and industrial growth. Solar power emerges as an efficient solution, particularly in hot climates with water and energy scarcity. This research focuses on a practical solar solution known as a solar still, a basic apparatus designed to convert available salty water into potable water. In this study, a single-slope solar still using acrylic material is experimentally analysed, predicting daily distillate production under varying climatic conditions. Using heat and solar radiation, solar distillation offers a simple, affordable, and small-scale approach to clean water production. The solar still, utilizing acrylic sheets as a basin material, minimizes heat losses and enhances water evaporation rates, making it a promising technology for addressing water scarcity issues. The experimental analysis results revealed a distillate output of 420 ml per 0.49 m² per day.
Volume: 39
Issue: 2
Page: 850-859
Publish at: 2025-08-01

Dynamic attendance system using face recognition via machine learning models

10.11591/ijeecs.v39.i2.pp1421-1430
Nishant Upadhyay , Nidhi Bansal , Emil Velinov , Harshit Harshit , Abhay Sharma , Sanjeev Kumar
Traditional methods to handle attendance have been implemented in the schools in the past and most of them are discouraging as they require that the institutions implement the use of paper and pen to get the results. To enhancing effectiveness and safeguarding, this paper presents a face recognition attendance system that mechanizes the usual attendance taking process. Using best practices in facial recognition, the system captures images of students’ faces, stores them, feeds them into a recognition model, and uses real-time facial recognition to mark attendance. This means that the system enjoys data encryption and password protected access that ensures data is safe. In the proposed system, the OpenCV face recognition libraries combined with machine learning algorithms for better face recognition ability with better efficiency. The results confirm that the system provides a reliable approach to handling attendance and it may debut in various contexts.
Volume: 39
Issue: 2
Page: 1421-1430
Publish at: 2025-08-01

Identification of chilli leaf disease using contrast limited histogram equalisation and k-means clustering

10.11591/ijeecs.v39.i2.pp1100-1108
Shiny Rajendrakumar , Rajashekarappa Rajashekarappa , Vasudev K. Parvati
Plant disease diagnosis is crucial for preventing productivity and quality losses in agricultural products. Because plants are continually attacked by insects, bacterial infections, and smaller scale organisms it is necessary for early diagnosis disease control is a vital part of profitable chilli crop production, hence early diagnosis of disease identification is an important aspect of crop management. This paper discusses strategies for detecting disease effectively in order to improve chilli plant product quality. An image processing technique based on identification of chilli leaf disease using contrast limited histogram equalisation and k-means clustering (KMC). The approach was carried out in five stages: acquiring the image, preprocessing, extracting features, classifying the diseases, and showing the outcome. This work offers a thorough implementation of CLAHE for preprocessing, k-means cluster for feature extraction and support vector machine (SVM) for classification of chilli leaf diseases. The accuracy was tested for standard chilli dataset for major 2 types of diseases including anthracnose and bacterial blight form kaggle dataset with varying samples of 70:30 and 60:40 respectively and it is observed that the average accuracy improved to 98% compared to existing techniques.
Volume: 39
Issue: 2
Page: 1100-1108
Publish at: 2025-08-01

Analyzing and clustering students admission data in Yala Rajabhat University Thailand

10.11591/ijeecs.v39.i2.pp1310-1325
Thanakorn Pamutha , Wanchana Promthong , Sofwan Pahlawan
This research explores the use of clustering techniques to analyze student admission data at Yala Rajabhat University, Thailand, aiming to enhance recruitment strategies and understand student profiles. Employing K-means, Hierarchical Clustering, and Density-based spatial clustering of applications with noise (DBSCAN), the study groups admission data based on factors like educational institution, geographic location, and program chosen. The methodology incorporates normalization and principal component analysis (PCA) to ensure data quality, while the Elbow Method determines the optimal number of clusters for effective data segmentation. The davies-bouldin index (DBI) evaluates the clustering configurations, ensuring that clusters are well-separated and cohesive. The results reveal distinct student profiles that can inform targeted marketing and improve recruitment strategies. This study not only provides strategic insights into student recruitment but also contributes to the literature on the use of data science in educational settings, highlighting the transformative impact of advanced analytics on institutional effectiveness. The research emphasizes the importance of data-driven approaches in adapting to the changing dynamics of student admissions and the competitive landscape of higher education.
Volume: 39
Issue: 2
Page: 1310-1325
Publish at: 2025-08-01

Optimization of hybrid PV-wind systems with MPPT and fuzzy logic-based control

10.11591/ijeecs.v39.i2.pp747-760
Ayoub Fenniche , Abdelkader Harrouz , Yassine Bellebna , Abdallah Laidi , Ismail Benlaria
The growing demand for sustainable and reliable energy solutions has driven the development of hybrid renewable energy systems (HRES) that combine multiple energy sources. This research explores the integration of solar energy and wind energy systems, utilizing permanent magnet synchronous generators (PMSG) for wind energy conversion. PMSGs are gaining popularity due to their high efficiency and ability to operate effectively in variable-speed wind conditions, making them ideal for hybrid systems. The study focuses on optimizing the energy extraction from both PV and wind systems using maximum power point tracking (MPPT) boost converters. The control for the MPPT boost converters is based on fuzzy logic (FL), a method that offers flexibility and adaptability in managing the non-linear and dynamic characteristics of renewable energy sources. A hybrid system consisting of PV, wind energy, and a battery storage system connected to a DC bus is simulated using MATLAB Simulink. The model demonstrates the effectiveness of integrating PV and wind energy with MPPT-controlled boost converters and fuzzy logic control, ensuring optimal energy utilization, stable system performance, and efficient energy storage. This research underscores the potential of hybrid renewable energy systems, showcasing how advanced control strategies can significantly improve the efficiency and reliability of energy generation and storage solutions.
Volume: 39
Issue: 2
Page: 747-760
Publish at: 2025-08-01

Binary white shark optimization algorithm with Z-shaped transfer function for feature selection problems

10.11591/ijeecs.v39.i2.pp1269-1279
Avinash Nagaraja Rao , Sitesh Kumar Sinha , Shivamurthaiah Mallaiah
Feature selection is critical for improving model performance and managing high-dimensional data, yet existing methods often face limitations such as inefficiency and suboptimal results. This study addresses these challenges by introducing a novel approach using the white shark optimization (WSO) algorithm and its binary variants to enhance feature selection. The proposed methods are evaluated on various datasets, including “Dorothea,” “Breast Cancer,” and “Arrhythmia,” focusing on classification accuracy, the number of features selected, and fitness values. Results demonstrate that the WSO algorithms significantly outperform traditional methods, offering notable improvements in accuracy and efficiency. Specifically, the WSO variants consistently achieve higher accuracy and better fitness values while effectively reducing the number of selected features. This research contributes to the field by providing a more effective optimization approach for feature selection, addressing existing inefficiencies, and suggesting future directions for further refinement and broader application. The findings highlight the potential of advanced optimization techniques in enhancing data analysis and model performance, offering valuable insights for practitioners and researchers.
Volume: 39
Issue: 2
Page: 1269-1279
Publish at: 2025-08-01

Devising the m-learning framework for enhancing students' confidence through expert consensus

10.11591/ijeecs.v39.i2.pp1035-1052
Teik Heng Sun , Muhammad Modi Lakulu , Noor Anida Zaria Mohd Noor
Past research has shown the relationship between self-regulated learning (SRL) and academic success. Self-regulated learners will monitor their learning, reflect on what they have learnt, adjust their learning strategies accordingly, and repeat this entire process throughout their learning. The ability to perform SRL will require the individual to have the belief and confidence in his/her capacity to succeed and accomplish the tasks. Therefore, this study aims to devise a mobile learning (m-learning) framework for enhancing the students’ confidence. To achieve this, the Fuzzy Delphi method was used to validate the proposed framework where the survey questionnaire was distributed to 21 experts who are the experts in their respective fields for their consensus to be obtained. Consensus showed that “assessment data” can indicate the students’ confidence when they attempt the assessment. Experts opined that “goal expectation,” and “viewed lessons, chapters, or syllabus” exert the most influence on the students’ confidence when they attempt their assessment. There was strong consensus from experts that “data security” is the most important element in the system infrastructure, and the “text mining technique” element can be used to evaluate the students’ confidence.
Volume: 39
Issue: 2
Page: 1035-1052
Publish at: 2025-08-01

Wirelength estimation for VLSI cell placement using hybrid statistical learning

10.11591/ijeecs.v39.i2.pp840-849
Joyce Ng Ting Ming , Ab Al-Hadi Ab Rahman , Nuzhat Khan , Muhammed Paend Bakht , Shahidatul Sadiah , Mohd Shahrizal Rusli , Muhammad Nadzir Marsono
Optimizing wirelength involves predicting the total length of wires needed to connect different components within a chip during cell placement. It is a fundamental challenge in very-large-scale integration (VLSI) of integrated circuit (IC) design, as it directly impacts the overall performance and manufacturability of chips. Accurate wire-length estimation in the early stages of the design process is critical for guiding subsequent optimization tasks. This paper proposes a novel hybrid linear regression wirelength (hybrid-LRWL) method that combines the strengths of existing methods rectilinear Steiner minimal tree (RSMT) for low-degree nets and a statistical learning-based approach for high-degree nets. Additionally, it compares the performance of three well-established wirelength estimation techniques: half-perimeter wirelength (HPWL), rectilinear minimum spanning tree (RMST), and RSMT. The methods were evaluated using the International Symposium on Physical Design (ISPD) 2011 benchmark suite, considering accuracy and computational efficiency. The experimental results demonstrated that the proposed hybrid method achieves superior accuracy, with a mean error of less than 0.05% in total wirelength, closely approximating RSMT results. The proposed method reduces computational time up to 3.6 times faster than traditional RSM-based methods. The results establish a strong framework for accurate and efficient wirelength estimation in VLSI design for modern, high-performance ICs.
Volume: 39
Issue: 2
Page: 840-849
Publish at: 2025-08-01

Systematic literature review of learning model using augmented reality for generation Z in higher education

10.11591/ijeecs.v39.i2.pp1109-1120
Zulfachmi Zulfachmi , Normala Rahim , Wan Rizhan , Puji Rahayu , Aggry Saputra
Higher education is evolving with innovations aimed at enhancing the quality of learning, and one prominent innovation is the integration of augmented reality (AR) technology into the learning process. AR merges real-world and virtual elements in real-time, creating interactive and immersive educational experiences. This technology supports the display and interaction with virtual objects, enhancing engagement and comprehension among students. However, effective integration of AR in higher education faces challenges such as limited technological infrastructure, the need for skilled lecturers, and the adaptation of teaching methods to suit generation Z's learning preferences. Despite their technological proficiency, many educational institutions struggle to optimally implement innovations like AR. This systematic literature review aims to explore and identify an AR-based learning model suitable for generation Z in higher education. Findings suggest that AR technology can significantly enhance learning by offering engaging visualizations and interactive experiences, aligning well with generation Z's characteristics and learning styles. Effective AR implementation requires suitable platforms, such as mobile, desktop, wearable, and projection platforms, each offering unique benefits. By designing AR learning models that cater to generation Z, educational institutions can improve learning outcomes and experiences.
Volume: 39
Issue: 2
Page: 1109-1120
Publish at: 2025-08-01

An optimized architecture for real-time fraud detection in big data systems, ecosystems, and environments

10.11591/ijeecs.v39.i2.pp1221-1235
Gaber Elsayed Abutaleb , Abdallah A. Alhabshy , Berihan R. Elemary , Ebeid Ali , Kamal Abdelraouf Eldahshan
The exponential growth of data in recent years has created significant challenges in fraud detection. Fraudulent activities are increasingly widespread across sectors, such as banking, web networks, health insurance, and telecommunications. This trend highlights a growing need for big data technologies such as Hadoop, Spark, Storm, and HBase to enable real-time detection and analysis of data fraud. This study aims to enhance understanding of the fraud classifications and their spread in various sectors. Fraud detection involves analyzing data and developing machine learning (ML) models or traditional rule-based systems to identify abnormal activities as they occur. The analysis in this paper examines both the advantages and limitations of these solutions, particularly regarding scalability and performance. This paper evaluates the methods and big data tools used in fraud detection and prevention through a comprehensive literature review, emphasizing the implementation challenges. This review discusses existing solutions, operational environments, and the ML algorithms and traditional rules employed. The main objective of this study is to address these challenges by proposing an innovative architecture that equips organizations with the latest knowledge and methodologies in big data technologies for real-time fraud detection and prevention.
Volume: 39
Issue: 2
Page: 1221-1235
Publish at: 2025-08-01

Date fruit classification using CNN and stacking model

10.11591/ijeecs.v39.i2.pp1373-1383
Ikram kourtiche , Mostefa M. O. Bendjima , Mohammed El Amin Kourtiche
In North Africa and the Middle East, the date is the most popular fruit, with millions of tons harvested annually. They are a crucial component of the diet due to their exceptional content of essential vitamins and minerals, which confer a high nutritional value. The ability to accurately identify and differentiate between date varieties is therefore of paramount importance in agriculture. It is crucial for improving agricultural practices, ensuring harvest quality, and contributing to the economic development of date-producing regions. In this paper, we propose a hybrid method for classifying date fruit varieties based on two stages. In the first stage, we select the two best-performing pre-trained models from six experimented deep learning models, and we concatenate the feature maps extracted from these two models. In the second stage, we apply different classification methods, including artificial neural networks (ANN), support vector machines (SVM), and logistic regression (LR). The performance achieved by these methods is 97.22%, 98.46%, and 99.07%, respectively. Then, with the stacking model, we combined these methods, and the performance result was increased to 99.38%. This result demonstrates the effectiveness of the hybrid model for identifying date fruit varieties.
Volume: 39
Issue: 2
Page: 1373-1383
Publish at: 2025-08-01
Show 33 of 1880

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration