Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

29,196 Article Results

Evaluating clustering algorithms with integrated electric vehicle chargers for demand-side management

10.11591/ijece.v15i6.pp5837-5846
Ayoub Abida , Redouane Majdoul , Mourad Zegrari
The integration of electric vehicles (EVs) and their effects on power grids pose several challenges for distribution operators. These challenges are due to uncertain and difficult-to-predict loads. Every electric vehicle charger (EVC) has its specific pattern. This challenge can be addressed by clustering methods to determine EVC energy consumption clusters. Demand side management (DSM) is an effective solution to manage the incoming load of EVs and the large number of EVCs. Considering the challenges of peak consumptions and valleys, the adoption of vehicle-to-grid (V2G) technology requires mastering load clusters to develop energy management systems for distributors. This work used clustering algorithms (K-means, DBSCAN, C-means, BIRCH, Mean-Shift, OPTICS) to identify load curve patterns, and for performance evaluation of algorithms, it worked on metrics like the Silhouette coefficient, Calinski-Harabasz index (CHI), and Davies-Bouldin index (DBI) to evaluate results. C-means achieves the best overall clustering performance, evidenced by the highest Silhouette coefficient (0.30) and a strong Calinski-Harabasz score (543). Mean-Shift excels in the Davies-Bouldin Index (1.13) but underperforms on other metrics. BIRCH provides a balanced approach, delivering moderate results across evaluated metrics.
Volume: 15
Issue: 6
Page: 5837-5846
Publish at: 2025-12-01

Designing, developing and analyzing of a rectangular-shaped patch antenna at 3.5 GHz for 5G applications at S band

10.11591/ijece.v15i6.pp5422-5432
Sukanto Halder , Md. Sohel Rana , Md Abdul Ahad , Md. Shehab Uddin Shahriar , Md. Abdulla Al Mamun , Md. Mominur Rahaman , Omer Faruk , Md. Eftiar Ahmed
This research study focuses on the design and analysis of two distinct patch antennas for 5G applications at 3.5 GHz. Rogers RT5880 served as the foundational material for antenna designs I and II. A 50 Ω feed line is utilized to supply both antennas. According to the calculations, Design I exhibits a reflection coefficient (S11) of -32.98 dB, a voltage standing wave ratio of 1.045, a gain of 7.81 dBi, an efficiency of 89.2%, and a surface current of 66.82 A/V. Design II has a reflection coefficient (S11) of 34.98 dB, voltage standing wave ratio (VSWR) of 1.036, gain of 8.78 dBi, efficiency of 89.87%, and surface current of 62.7 A/V. Among the two antenna designs, design II outperformed design I, and the results indicate that the antenna fulfilled the designated purpose. The novelties of the proposed paper are to design two different patch antennas using same materials and highlight the performance of the design parameters. Design II is proficient in supporting 5G services owing to its advantageous performance. In addition, S11 of the antenna is reduced to bring the VSWR value is close to 1. Also, improve gain, directivity and efficiency by bringing the antenna impedance matching close to 50 Ω.
Volume: 15
Issue: 6
Page: 5422-5432
Publish at: 2025-12-01

Enhanced ankle physiotherapy robot with electromyography - triggered ankle velocity control

10.11591/ijece.v15i6.pp5314-5326
Dimas Adiputra , Radithya Anjar Nismara , Muhammad Rafli Ramadhan Lubis , Nur Aliffah Rizkianingtyas , Kensora Bintang Panji Satrio , Rangga Roospratama Arif , Annisa Salsabila
Previous ankle physiotherapy robots, called picobot rely on predefined trajectories continuous passive movement without considering patient intent, limiting the encouragement of user-intent motion. This study then integrates electromyography (EMG) signals as triggers into picobot with an ankle velocity-based control system. The upgraded robot activates movement in specific gait phases based on muscle activity, synchronizing therapy with the patient’s intent. Functionality test on 7 young male healthy subjects investigates leg muscles, such as Tibialis Anterior, Soleus, and Gastrocnemius muscles for the most significantly contribute to ankle movements. Then, the muscle is tested to trigger picobot movements. Functionality tests revealed the Tibialis muscle significantly contributes to gait phases 2, the Soleus is prominent in phases 3 and 4, and gastrocnemius is active on phase 1. The robot successfully performs plantarflexion when EMG signals exceed a 1.58 V threshold, reaching a target position of -0.11 rad at a constant velocity of -0.62 rad/s. These findings establish a foundation for future trials since patient testing has not yet been conducted. By promoting active participation, this innovation has the potential to enhance rehabilitation outcomes. Incorporating user-intent triggers may accelerate recovery and improve healthcare accessibility in Indonesia, offering a significant advancement in physiotherapy technologies.
Volume: 15
Issue: 6
Page: 5314-5326
Publish at: 2025-12-01

Optimization of water resource management in crops using satellite technology and artificial intelligence techniques

10.11591/ijece.v15i6.pp5847-5853
Erick Salvador Reyes-Galván , Fredy Alexander Bolivar-Gomez , Yeison Alberto Garcés-Gómez
This study aims to optimize water consumption in avocado crops through the application of satellite technology, machine learning algorithms, and precise climate data from the climate hazards group infrared precipitation with stations (CHIRPS) system. Crop classification in satellite images is conducted using the random forest algorithm, enabling detailed categorization of cultivated areas, urban land, soil, and vegetation, with a specific focus on avocados due to their high-water demand. Given its economic importance and status as one of the most water-intensive crops, avocado cultivation presents a critical challenge for agricultural sustainability. To validate predictive models and ensure classification accuracy, advanced evaluation methodologies such as the confusion matrix and Cohen's kappa index are utilized, quantifying the precision and reliability of the results. This estimation of water consumption under deficit and surplus conditions offers key insights for efficient water management in avocado cultivation. The results generated can enhance agricultural efficiency by aligning water use with the crop’s actual requirements, thereby contributing to the reduction of its water footprint.
Volume: 15
Issue: 6
Page: 5847-5853
Publish at: 2025-12-01

Machine learning model for accurate prediction of coronary artery disease by incorporating error reduction methodologies

10.11591/ijece.v15i6.pp5655-5666
Santhosh Gupta Dogiparthi , Jayanthi K. , Ajith Ananthakrishna Pillai , K. Nakkeeran
Coronary artery disease (CAD) remains a leading cause of mortality worldwide, with an especially high burden in developing countries such as India. In light of increasing patient loads and limited medical resources, there is an urgent need for accurate and reliable diagnostic support systems. This study introduces a machine learning (ML) framework that aims to enhance CAD prediction accuracy by specifically addressing the reduction of false negatives (FN), which are critical in medical diagnostics. Utilizing a stacked ensemble model comprising five base classifiers and a meta-classifier, the framework integrates cost-sensitive learning, classification threshold tuning, engineered features, and manual weighting strategies. The model was developed using a clinically acquired dataset from the Jawaharlal Institute of postgraduate medical education and research (JIPMER), consisting of 428 patient records with 36 original features. Evaluation metrics show that the proposed model achieved an accuracy of 92.19%, sensitivity of 98%, and an F1-score of 95.15%. These improvements are significant in a clinical context, potentially reducing missed diagnoses and improving patient outcomes. The model is intended for deployment in cardiology outpatient settings and demonstrates a scalable, adaptable approach to medical diagnostics.
Volume: 15
Issue: 6
Page: 5655-5666
Publish at: 2025-12-01

Optimizing radial basis function networks for harmful algal bloom prediction: a hybrid machine learning approach

10.11591/ijece.v15i6.pp5647-5654
Nik Nor Muhammad Saifudin Nik Mohd Kamal , Ahmad Anwar Zainuddin , Amir ‘Aatieff Amir Hussin , Ammar Haziq Annas , Normawaty Mohammad-Noor , Roziawati Mohd Razali
The deployment of artificial intelligence in environmental monitoring demands models balancing efficiency, interpretability, and computational cost. This study proposes a hybrid radial basis function network (RBFN) framework integrated with fuzzy c-means (FCM) clustering for predicting harmful algal blooms (HABs) using water quality parameters. Unlike conventional approaches, our model leverages localized activation functions to capture non-linear relationships while maintaining computational efficiency. Experimental results demonstrate that the RBFN-FCM hybrid achieved high accuracy (F1-score: 1.00) on test data and identified Chlorophyll-a as the strongest predictor (r = 0.94). However, real-world validation revealed critical limitations: the model failed to generalize datasets with incomplete features or distribution shifts, predicting zero HAB outbreaks in an unlabeled 11,701-record dataset. Comparative analysis with Random Forests confirmed the RBFN-FCM's advantages in training speed and interpretability but highlighted its sensitivity to input completeness. This work underscores the potential of RBFNs as lightweight, explainable tools for environmental forecasting while emphasizing the need for robustness against data variability. The framework offers a foundation for real-time decision support in ecological conservation, pending further refinement for field deployment.
Volume: 15
Issue: 6
Page: 5647-5654
Publish at: 2025-12-01

Stability analysis and robust control of cyber-physical systems: integrating Jacobian linearization, Lyapunov methods, and linear quadratic regulator control via LMI techniques

10.11591/ijece.v15i6.pp5276-5285
Rachid Boutssaid , Abdeljabar Aboulkassim , Said Kririm , El Hanafi Arjdal , Youssef Moumani
Stability issues in cyber-physical systems (CPS) arise from the challenging effects of nonlinear dynamics relation to multi-input, multi-output systems. This research proposed a robust control framework that combines Jacobian linearization, Lyapunov stability analysis, and linear quadratic regulator (LQR) control via linear matrix inequalities (LMIs). The robust methodology does the following: it applies linearization on the dynamics of the CPS; it establishes the stability of the system using Lyapunov functions and LMIs; and it designs an LQR controller. The proposed framework was validated through a comparison between the behavior of a linearized and nonlinear model. The autonomous vehicle application showed: a settling time of 20 seconds; an overshoot of 3.8187%; and a steady-state error of 2.688×10⁻⁷. The proposed framework is robustly demonstrated and has applications to areas in automation and smart infrastructure. Future work includes optimizing the design of weighting matrices and developing adaptive control features.
Volume: 15
Issue: 6
Page: 5276-5285
Publish at: 2025-12-01

Exploring feature engineering and explainable AI for phishing website detection: a systematic literature review

10.11591/ijece.v15i6.pp5863-5878
Norah Alsuqayh , Abdulrahman Mirza , Areej Alhogail
Detecting phishing websites is a rapidly evolving field aimed at identifying and mitigating cyberattacks targeting individuals, organizations, and governments. Ongoing progress in artificial intelligence (AI) has the potential to revolutionize phishing detection by enhancing model accuracy and improving transparency through eXplainable AI (XAI). However, significant challenges remain, particularly in integrating feature engineering with XAI to address sophisticated phishing strategies including zero-day attacks, that evade traditional detection mechanisms. To overcome these challenges, this examines the impact of feature engineering and XAI in phishing detection, emphasizing their ability to enhance accuracy while providing interpretability. By integrating feature extraction with interpretable models, these techniques improve decision-making transparency and system robustness. This paper presents the first systematic literature review (SLR) focusing on the impact of feature engineering and XAI on state-of-the-art phishing detection approaches. Additionally, it identifies critical research gaps and challenges, including scalability issues, the evolution of phishing techniques, and balancing complexity with interpretability. The findings provide valuable academic insights while offering practical recommendations for developing accurate and interpretable phishing detection systems, aiding organizations in strengthening cybersecurity measures.
Volume: 15
Issue: 6
Page: 5863-5878
Publish at: 2025-12-01

Enhancing system integrity with Merkle tree: efficient hybrid cryptography using RSA and AES in hash chain systems

10.11591/ijece.v15i6.pp5679-5689
Irza Nur Fauzi , Farikhin Farikhin , Ferry Jie
An analysis is conducted to address the growing threats of data theft and unauthorized manipulation in digital transactions by integrating \structures within hash chain systems using hybrid cryptography techniques, specifically Rivest-Shamir-Adleman (RSA) and advanced encryption standard (AES) algorithms. This approach leverages AES for efficient symmetric data encryption and RSA for secure key exchanges, while the hash chain framework ensures that each data block is cryptographically linked to its predecessor, reinforcing system integrity. The Merkle tree structure plays a crucial role by allowing precise and rapid detection of unauthorized data changes. Empirical analyses demonstrate notable improvements in both the efficiency of cryptographic processes and the robustness of data validation, underscoring the method’s applicability in high data throughput environments such as educational institutions. This research makes a substantive contribution to information security by offering a sophisticated solution that strengthens data protection practices, ensuring greater resilience against increasingly sophisticated data threats.
Volume: 15
Issue: 6
Page: 5679-5689
Publish at: 2025-12-01

Platforma: a modular and agile framework for simplified platformer game development

10.11591/ijece.v15i6.pp5535-5542
Rickman Roedavan , Abdullah Pirus Leman , Bambang Pudjoatmodjo
Research on game development frameworks has been extensively conducted; however, most frameworks are still too general. Conventional game frameworks are challenging for students who are new to game development, especially with their limited information and skills. Beginner game developers should ideally be guided by a practical and specific framework to help them better understand the structure of game development in a more directed manner. This paper proposes platformer modular and agile framework (Platforma) that specifically designed for platformer game development. The framework is built based on the atomic design model, breaking down each minor feature of a platformer game element and grouping these features into more specific modules. The framework was tested on three teams of students. Each team was tasked with developing a platformer game with a minimum of 15 levels of the reach game goals typology. Testing results involving 100 respondents using the game experience questionnaire (GEQ) indicated that the games developed had a positive aspect score of 3.48 and a negative aspect score of 2.65. Overall, these results suggest that the Platforma can serve as an effective guide for beginners in developing platformer games.
Volume: 15
Issue: 6
Page: 5535-5542
Publish at: 2025-12-01

Adaptive tilt acceleration derivative filter control based artificial pancreas for robust glucose regulation in type-I diabetes mellitus patient

10.11591/ijece.v15i6.pp5297-5313
Smitta Ranjan Dutta , Akshaya Kumar Patra , Alok Kumar Mishra , Ramachandra Agrawal , Dillip Kumar Subudhi , Lalit Mohan Satapathy , Sanjeeb Kumar Kar
This study proposes an Aquila optimization–based tilt acceleration derivative filter (AO-TADF) controller for robust regulation of blood glucose (BG) levels in patients with type-I diabetes mellitus (TIDM) using an artificial pancreas (AP). The primary objective is to develop a controller that ensures normo-glycemia (70–120 mg/dl) while enhancing stability, accuracy, and robustness under physiological uncertainties and external disturbances. The AO algorithm tunes the control gains of the TADF controller to minimize the integral time absolute error (ITAE), ensuring optimal insulin infusion in real time. The AO-TADF controller introduces a filtered structure to improve the dynamic response and noise rejection capability, effectively handling the nonlinear nature of glucose-insulin dynamics. Simulation results demonstrate that the proposed approach achieves a faster settling time (230 minutes), lower peak overshoot (3.9 mg/dl), and reduced noise (1%) compared to conventional proportional integral derivative (PID), fuzzy, sliding mode (SM), linear quadratic gaussian (LQG), and H∞ controllers. The closed-loop system achieves a stable glucose level of 81 mg/dl under varying meal and exercise disturbances, validating the superior performance and robustness of the AO-TADF approach.
Volume: 15
Issue: 6
Page: 5297-5313
Publish at: 2025-12-01

Design and development of home-grown biometric fingerprint device and software for attendance and access control

10.11591/ijece.v15i6.pp5616-5632
Jumoke Soyemi , Ogunyinka Olawale Ige , Olugbenga Babajide Soyemi , Ajibodu Franklin Ademola , Adaramola Ojo Jayeoba , Afolayan Andrew Olumide , Habeeb O. Amode , Mukail Aremu Akinde
This study details the design, development, and deployment of an Android-based Biometric Fingerprint system tailored for institutional access control, attendance tracking, exam monitoring, and staff management. Developed collaboratively by the Innovation Centre and departments across engineering and information and communication technology (ICT), the system integrates custom hardware and software. Hardware includes fingerprint sensors connected to an ATMEGA8 microcontroller and Android interfaces for portability. The software uses modular architecture, comprising a Kotlin-based mobile app with Jetpack Compose, a Laravel-powered web admin panel, and a secure backend API hosted on a virtual private server (VPS). Fingerprint data is safely stored using base64 encoding, enabling accurate user authentication and real-time tracking. A functional prototype was built, tested, and refined, with 95 units deployed in a pilot phase. The system supports multiple fingerprint profiles, secure data handling, and integration with existing institutional platforms. Emphasizing customization, modularity, and adherence to ICT policies, the research also serves as a training tool for staff and students, enhancing operational efficiency and supporting local technology development. Performance evaluation showed a FAR of 0.5%, FRR of 1.2%, and an average authentication time of 2.3 seconds. Post-deployment, student attendance increased by 15%, fee compliance by 10%, and 89% of users rated the system as easy to use. This work demonstrates effective hardware-software co-design for scalable biometric authentication in educational settings.
Volume: 15
Issue: 6
Page: 5616-5632
Publish at: 2025-12-01

Detection of breast cancer with ensemble learning using magnetic resonance imaging

10.11591/ijece.v15i6.pp5371-5379
Swati Nadkarni , Kevin Noronha
Despite notable progress in medicine along with technology, the deaths due to breast cancer are increasing steadily. This paper proposes a framework to aid the early detection of lesions in breast with magnetic resonance imaging (MRI). The work has been carried out using diffusion weighted imaging (DWI) and dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI). Data augmentation has been incorporated to enlarge the data set collected from a reputed hospital. Deep learning has been implemented using the ensemble of convolutional neural network (CNN). Amongst the individual CNN models, the you only look once (YOLO) CNN yielded the highest performance with an accuracy of 93.4%, sensitivity of 93.44%, specificity of 93.33%, and F1-score of 93.44%. Using Hungarian optimization, appropriate selection of individual CNN architectures to form the ensemble of CNN was possible. The ensemble model enhanced performance with 95.87% accuracy, 95.08% sensitivity, 96.67% specificity, and F1-score of 95.87%.
Volume: 15
Issue: 6
Page: 5371-5379
Publish at: 2025-12-01

A new algorithm for quality-of-service improvement in mobile ad hoc networks

10.11591/ijece.v15i6.pp5466-5483
Hanafy M. Ali , Adel F. El-Kabbany , Yahia B. Hassan
The quality of service (QoS) in mobile ad hoc networks (MANETs) plays a crucial role in optimizing overall network resource utilization. MANET routing protocols, fundamental to QoS, demand adaptive and swift solutions for efficient path searching. In this context, our paper introduces a novel algorithm based on MANETs, employing a hybrid approach that combines ant colony optimization (ACO) with hybrid multipath quality of service ant (HMQAnt) routing protocols. Our algorithm emphasizes bandwidth optimization as a pivotal factor for providing effective paths. By incorporating bandwidth as a significant parameter in the MANETs algorithm, we aim to enhance its overall properties. The proposed routing protocol, focusing on bandwidth optimization, is anticipated to improve the delivery of total network traffic. Evaluation of the algorithm's performance is conducted through QoS metrics, which are overhead, end-to-end delay, and jitter, throughputs, utilizing a MATLAB simulator. Simulation results indicate that our proposed routing protocol holds a distinct advantage compared to ad hoc on-demand distance vector (AODV), destination- sequenced distance (DSDV), dynamic source routing (DSR), and hybrid ant colony optimization-based (ACO) routing protocol called (ANTMANET) algorithms.
Volume: 15
Issue: 6
Page: 5466-5483
Publish at: 2025-12-01

Improving electrical load forecasting by integrating a weighted forecast model with the artificial bee colony algorithm

10.11591/ijece.v15i6.pp5854-5862
Ani Shabri , Ruhaidah Samsudin
Nonlinear and seasonal fluctuations present significant challenges in predicting electricity load. To address this, a combination weighted forecast model (CWFM) based on individual prediction models is proposed. The artificial bee colony (ABC) algorithm is used to optimize the weighted coefficients. To evaluate the model’s performance, the novel CWFM and three benchmark models are applied to forecast electricity load in Malaysia and Thailand. Performance is assessed using mean absolute percentage error (MAPE) and root mean square error (RMSE). The experimental results indicate that the proposed combined model outperforms the single models, demonstrating improved accuracy and better capturing seasonal variations in electricity load. The ABC algorithm helps in finding the optimal combination of weights, ensuring that the model adapts effectively to different forecasting scenarios.
Volume: 15
Issue: 6
Page: 5854-5862
Publish at: 2025-12-01
Show 15 of 1947

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration