Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

29,082 Article Results

Data transmission technologies for the development of a drilling rig control and diagnostic system

10.11591/ijece.v15i6.pp5506-5514
Irina Rastvorova , Sergei Trufanov
This article examines telecommunication technologies used in automatic control and diagnostics systems and discusses key aspects of using telecommunication solutions for monitoring and controlling the operation processes of the electrical complex of a drilling rig, including remote access, data transmission and real-time information analysis. It provides a comprehensive overview of such communication technologies as Bluetooth, Wi-Fi, ZigBee, global system for mobile communication (GSM), RS-232, RS-422, RS-485, universal serial bus (USB), Ethernet, narrowband internet of things (NB-IoT), long range wide area network (LoRaWAN), and power line communication (PLC). Technologies that will be most effective for use in control and diagnostics systems of a drilling rig complex are proposed. The possibility of using machine learning to process a large amount of data obtained during the drilling process to optimize the controlled drilling parameters is investigated.
Volume: 15
Issue: 6
Page: 5506-5514
Publish at: 2025-12-01

Low-power and reduced delay in inverter and universal logic gates using Hvt-FinFET technology

10.11591/ijece.v15i6.pp5193-5204
Veerappa Chikkagoudar , G. Indumathi
The rapid scaling of conventional complementary metal–oxide– semiconductor (CMOS) metal–oxide–semiconductor field-effect transistors (MOSFETs) led to significantly increasing power dissipation, delay, and short channel effects (SCEs). Fin field-effect transistor (FinFET) technology is a better alternative to MOSFETs with superior electrostatic control, low power, and reduced leakage current. FinFETs have been chosen for their efficiency in overcoming these issues. This work focuses on the design of high-threshold voltage fin field-effect transistor (Hvt-FinFET) 18 nm technology-based inverter with optimized parameters and implementing universal gates NAND and NOR in Cadence Virtuoso tool. These three gates are basic building blocks for any complex digital system design. The results demonstrate significant improvement in power and reduced propagation delay in comparison with conventional CMOS technology. The Hvt-FinFET inverter obtained power dissipation and delay reduction of 13.63% and 33.33%, respectively. Power and delay optimization of 29.10% and 11.8% have been obtained in the NAND gate and 31.28% and 29.08% in the NOR gate when compared to conventional CMOS circuits. The results demonstrate significant improvements in power savings, reduced propagation delay, and superior energy efficiency, validating the effectiveness of Hvt-FinFET technology for next-generation very large scale integration (VLSI) applications.
Volume: 15
Issue: 6
Page: 5193-5204
Publish at: 2025-12-01

Impact of outlier detection techniques on time-series forecasting accuracy for multi-country energy demand prediction

10.11591/ijece.v15i6.pp5067-5079
Shreyas Karnick , Sanjay Lakshminarayanan , Madhu Palati , Prakash R
Accurate energy demand prediction is crucial for efficient grid management and resource optimization, particularly across multiple countries with varying consumption patterns. However, real-world energy demand data often contains outliers that can distort forecasting accuracy. This study evaluates the impact of five outlier detection techniques—Z-Score, density- based spatial clustering of applications with noise (DBSCAN), isolation forest (IF), local outlier factor (LOF), and one-class support vector machine (SVM)—on the performance of three time-series forecasting models: long short-term memory (LSTM) networks, convolutional neural network (CNN) Autoencoders, and LSTM with attention mechanisms. The models are tested using energy demand data from four European countries— Germany, France, Spain, and Italy—derived from real-time consumption records. A comparative analysis based on root mean squared error (RMSE) demonstrates that incorporating outlier detection significantly enhances model robustness, reducing forecasting errors caused by anomalous data. The findings emphasize the importance of selecting appropriate outlier detection strategies to improve the accuracy and reliability of energy demand forecasting. This research provides valuable insights into the trade-offs involved in outlier removal, with implications for policy and operational practices in energy management.
Volume: 15
Issue: 6
Page: 5067-5079
Publish at: 2025-12-01

Geometrical determination of the focal point of parabolic solar concentrators

10.11591/ijece.v15i6.pp5055-5066
Bekzod Maxmudov , Sherzod A. Korabayev , Nosir Yu. Sharibaev , Abror Abdulkhaev , Xulkarxon Mahmudova , Sh A. Mahsudov
Parabolic solar concentrators play a crucial role in harnessing solar energy by focusing sunlight onto a single focal point, enhancing efficiency in solar thermal applications. However, accurately determining the focal point remains a significant challenge, affecting energy efficiency, stability, and operational costs. This study presents a novel approach to determining the focal point of parabolic solar concentrators using two distinct geometric and mathematical methods. The first method applies standard parabolic equations to derive the focal point, while the second method introduces a geometric approach based on the properties of straight-line tangents and angular measurements. Experimental validation was conducted by comparing the proposed method against laser-based focal point determination. The results demonstrate that the proposed method enhances heat collection efficiency and stability, leading to improved energy output. The findings of this study contribute to optimizing solar concentrator designs, reducing energy losses, and promoting sustainable energy applications.
Volume: 15
Issue: 6
Page: 5055-5066
Publish at: 2025-12-01

Robotic product-based manipulation in simulated environment

10.11591/ijece.v15i6.pp5894-5903
Juan Camilo Guacheta-Alba , Anny Astrid Espitia-Cubillos , Robinson Jimenez-Moreno
Before deploying algorithms in industrial settings, it is essential to validate them in virtual environments to anticipate real-world performance, identify potential limitations, and guide necessary optimizations. This study presents the development and integration of artificial intelligence algorithms for detecting labels and container formats of cleaning products using computer vision, enabling robotic manipulation via a UR5 arm. Label identification is performed using the speeded-up robust features (SURF) algorithm, ensuring robustness to scale and orientation changes. For container recognition, multiple methods were explored: edge detection using Sobel and Canny filters, Hopfield networks trained on filtered images, 2D cross-correlation, and finally, a you only look once (YOLO) deep learning model. Among these, the custom-trained YOLO detector provided the highest accuracy. For robotic control, smooth joint trajectories were computed using polynomial interpolation, allowing the UR5 robot to execute pick-and-place operations. The entire process was validated in the CoppeliaSim simulation environment, where the robot successfully identified, classified, and manipulated products, demonstrating the feasibility of the proposed pipeline for future applications in semi-structured industrial contexts.
Volume: 15
Issue: 6
Page: 5894-5903
Publish at: 2025-12-01

Optimal design, decoding, and minimum distance analysis of Goppa codes using heuristic method

10.11591/ijece.v15i6.pp5411-5421
Bouchaib Aylaj , Said Nouh , Mostafa Belkasmi
Error-correcting codes are crucial to ensure data reliability in communication systems often affected by transmission noise. Building on previous successful applications of our heuristic method degenerate quantum simulated annealing (DQSA) to Bose–Chaudhuri–Hocquenghem (BCH) and quadratic residue (QR) codes. This paper proposes two algorithms designed to address two coding problems for Goppa codes. DQSA-dmin computes the minimum distance (dmin) while DQSA-Dec, serves as a hard decoder optimized for additive white gaussian noise (AWGN) channels. We validate DQSA-dmin comparing its computed minimum distances with theoretical estimates for algebraically constructed Goppa codes, showing accuracy and efficiency. DQSA-dmin further used to find the optimal Goppa codes that reach the lower bound of dmin for linear codes known in the literature and stored in Marcus Grassl's online database. Indeed, we discovered 12 Goppa codes reaching this lower bound. For DQSA-Dec, experimental results show that it obtains a bit error rate (BER) of 10-5 when SNR=7.5 for codes with lengths less than 65, which is very interesting for a hard decoder. Additionally, a comparison with the Paterson algebraic decoder specific to this code family shows that DQSA-Dec outperforms it with a 0.6 dB coding gain at BER=10-4. These findings highlight the effectiveness of DQSA-based algorithms in designing and decoding Goppa codes.
Volume: 15
Issue: 6
Page: 5411-5421
Publish at: 2025-12-01

Flow-guided long short-term memory with adaptive directional learning for robust distributed denial of service attack detection in software-defined networking

10.11591/ijece.v15i6.pp5484-5496
Huda Mohammed Ibadi , Asghar A. Asgharian Sardroud
A software-defined networking (SDN) architecture is designed to improve network agility by decoupling the control and data planes, but while much more flexible, also makes networks more vulnerable to threats, such as distributed denial of service (DDoS) attacks. In this study we present a novel detection model, the flow-guided long short-term memory (LSTM) network with adaptive directional learning (ADL), for the mitigation of DDoS attacks in software defined networking (SDN) environments. While the methodology is based on a flow direction algorithm (FDA), which analyzes traffic patterns and detects anomalies from directional flow behavior. The proposed method integrates FDA in LSTM-based threat detection frameworks within internet of things (IoT) networks, thereby yielding enhanced detection accuracy, as well as a real-time security threat response. The experimental evaluation on two benchmark datasets, namely the InSDN dataset and a real-time dataset utilizing a Mininet and POX controller setup, shows that a detection rate of 99.85% and 99.72%, respectively, thereby showcasing the proposed model’s ability to differentiate between legitimate and malicious network traffic.
Volume: 15
Issue: 6
Page: 5484-5496
Publish at: 2025-12-01

Language learning strategies in relation to advanced Chinese vocabulary and writing proficiency

10.11591/ijere.v14i6.31857
Xinqin Liu , Mohammed Y.M. Mai
The study investigated the relationship between the language learning strategies (LLSs) employed by international undergraduate students at universities in Qinghai Province, China, and their proficiency in advanced Chinese vocabulary and writing. Data was collected from 45 advanced-level students selected through purposive sampling, using Oxford’s strategy inventory for language learning (SILL), an advanced Chinese vocabulary knowledge test, and advanced Chinese writing test scores. The descriptive analysis revealed moderate language learning strategy usage, with a preference for speaking and listening development. This result indicates a limited strategy usage. The correlation analysis showed no significant relationship between strategy usage and advanced Chinese vocabulary or writing proficiency. However, a strong relationship was observed between advanced Chinese vocabulary and writing proficiency. The absent relationship between strategy usage and proficiency levels suggests insufficient Chinese language proficiency among the students. The significant relationship highlights the crucial role of vocabulary in enhancing Chinese writing skills. The results provide practical insights for enhancing the use of strategies and vocabulary teaching to improve advanced writing and Chinese proficiency among international undergraduate students.
Volume: 14
Issue: 6
Page: 4844-4853
Publish at: 2025-12-01

Combination of rough set and cosine similarity approaches in student graduation prediction

10.11591/ijece.v15i6.pp6001-6011
Ratna Yulika Go , Tinuk Andriyanti Asianto , Dewi Setiowati , Ranny Meilisa , Christine Cecylia Munthe , R. Hendra Kusumawardhana
Higher education institutions must deliver high-quality education that produces graduates who are knowledgeable, skilled, creative, and competitive. In this system, students are a vital asset, and their timely graduation rate is an important factor to consider. In the department of computer science, a challenge arises in distinguishing between students who graduate on time and those who do not. With a low on-time graduation rate of just 1.90% out of 158 graduates, this issue could negatively affect the institution's accreditation evaluation. This research employs the Case-Based Reasoning method, enhanced with an indexing process using rough sets and a prediction process utilizing cosine similarity. The testing, conducted using k-fold validation with 60%, 70%, and 80% of the data, produced average accuracy rates of 64.2%, 66.3%, and 65.6%, respectively. The test results indicate that the highest average accuracy of 66.3% was achieved with 70% of the cases.
Volume: 15
Issue: 6
Page: 6001-6011
Publish at: 2025-12-01

Exploring feature selection method for microarray classification

10.11591/ijece.v15i6.pp5584-5593
Muhammad Zaky Hakim Akmal , Devi Fitrianah
Effectively selecting features from high-dimensional microarray data is essential for accurate cancer detection. This study explores the pivotal role of feature selection in improving the accuracy of classifying microarray data for ovarian cancer detection. Utilizing machine learning techniques and microarray technology, the research aims to identify subtle gene expression patterns that indicate ovarian cancer. The research explores the utilization of principal component analysis (PCA) for dimensionality reduction and compares the effectiveness of feature selection techniques such as artificial bee colony (ABC) and sequential forward floating selection (SFFS). The dataset used in this study comprises of 15154 genes, 253 instances, and 2 classes related to ovarian cancer. Through a comprehensive analysis, the study aims to optimize the classification process and improve the early detection of ovarian cancer. Moreover, the study presents the classification accuracy results obtained by PCA, ABC, and SFFS. While PCA achieved an accuracy of 96% and SFFS yielded a classification accuracy of 98%, ABC demonstrated the highest classification accuracy of 100%. These findings underscore the effectiveness of ABC as the preferred choice for feature selection in improving the classification accuracy of ovarian cancer detection using microarray data.
Volume: 15
Issue: 6
Page: 5584-5593
Publish at: 2025-12-01

Fine-tuning pre-trained deep learning models for crop prediction using soil conditions in smart agriculture

10.11591/ijece.v15i6.pp5667-5678
Praveen Pawaskar , Yogish H K , Pakruddin B , Deepa Yogish
Agriculture is the backbone of the Indian economy, with soil quality playing a crucial role in crop productivity. Farmers often struggle to select the appropriate crop based on soil type, leading to significant losses in yield and productivity. To address this challenge, deep learning techniques provide an efficient solution for automated soil classification. In this study, a dataset of 781 original soil images, including clay soil, alluvial soil, red soil, and black soil, was collected from Kaggle and augmented to 3,702 images to enhance model training. Several deep learning models were employed for soil classification, including pretrained architectures and a proposed model, SoilNet. Experimental results demonstrated that DenseNet201 achieved 100% validation accuracy, ResNet50V2 98%, VGG16 99%, MobileNetV2 99%, and the proposed SoilNet model 97%. The proposed approach outperformed existing work by surpassing 95% accuracy. Additionally, model performance was evaluated using precision, recall, and F1-score, ensuring a comprehensive analysis of classification effectiveness. These findings highlight the potential of deep learning in improving soil classification accuracy, aiding farmers in making informed crop selection decisions.
Volume: 15
Issue: 6
Page: 5667-5678
Publish at: 2025-12-01

AI-MG-LEACH: investigation of MG-LEACH in wireless sensor networks energy efficiency applied the advanced algorithm

10.11591/ijece.v15i6.pp5080-5090
Hicham Ouldzira , Alami Essaadoui , Mustapha EL Hanine , Ahmed Mouhsen , Hassane Mes-Adi
Wireless sensor networks (WSNs) play a crucial role in data collection across various fields like environmental monitoring and industrial automation. The energy efficiency of these networks, powered by limited-capacity batteries, is key to their performance. Clustering protocols such as low- energy adaptive clustering hierarchy (LEACH) are widely used to optimize energy consumption. To enhance LEACH’s performance, MG-LEACH was introduced, improving cluster head selection to extend network lifespan. This study compares MG-LEACH with AI-MG-LEACH, which incorporates artificial intelligence (AI) to further improve energy efficiency by selecting cluster heads based on factors like residual energy. Simulations show AI-MG-LEACH reduces energy consumption, extends network life, and enhances data reliability, outperforming MG-LEACH.
Volume: 15
Issue: 6
Page: 5080-5090
Publish at: 2025-12-01

Intelligent control for distributed smart grid: comprehensive system integrating wave, fuel cell, and photovoltaic power generation

10.11591/ijece.v15i6.pp5119-5129
Manohar B S , Basavaraja Banakara
The intermittent supply from renewable energy sources reckons integration of different renewable sources that can provide robust and uninterrupted energy supply to the grid. This paper applies an intelligent control method to such hybrid power generation involving a wave generator, fuel cell, and solar power generator integrated into the distribution power grid. A common DC link that supplies the voltage source converter (VSC) is powered by the output from the hybridized wave, fuel cell and photovoltaic (PV) output. Wave generator uses the rectifier DC-DC converter, PV uses a maximum power point tracking (MPPT)-controlled DC-DC converter and fuel cell uses a DC-DC converter. All DC sources converge at the DC link, connecting to an inverter featuring another voltage source controller for controlled AC voltage. In instances of power unavailability from renewable resources, the fuel cell seamlessly provides power. The inverter controls the integration of power from these sources to the grid and maintains stable DC link voltage due to the dynamic nature of the DQ controller. MATLAB-based simulation is developed for the proposed controller and a comparison between both proportional integral and adaptive neuro-fuzzy inference system (ANFIS) controller in the DC link voltage regulation loop is observed. An ANFIS controller is employed as an alternative to the proportional integral (PI) controller and found that the ANFIS controller outperformed the PI controller in voltage regulation at the DC link.
Volume: 15
Issue: 6
Page: 5119-5129
Publish at: 2025-12-01

Computational modelling under uncertainty: statistical mean approach to optimize fuzzy multi-objective linear programming problem with trapezoidal numbers

10.11591/ijece.v15i6.pp5708-5716
Arti Shrivastava , Bharti Saxena , Ramakant Bhardwaj , Aditya Ghosh , Satyendra Narayan
This study presents a comprehensive approach to solving fuzzy multi-objective linear programming problems (FMOLPP) under uncertainty using trapezoidal fuzzy numbers. The authors propose a novel integration of Yager’s ranking method, the Big-M optimization technique, and Chandra Sen’s statistical mean methods to effectively convert fuzzy objectives into crisp values and optimize them. The methodology allows for managing multiple fuzzy objectives by ranking and aggregating them using various statistical means such as arithmetic, geometric, quadratic, harmonic, and Heronian averages. The model is implemented using TORA software and demonstrated through a detailed numerical example. The results validate the robustness and practicality of the proposed approach, showcasing consistent optimal solutions across all statistical methods. This research significantly enhances decision-making processes in uncertain environments by offering a structured, computationally efficient solution strategy for complex real-world optimization problems.
Volume: 15
Issue: 6
Page: 5708-5716
Publish at: 2025-12-01

Enhanced spectrum sensing in MIMO-OFDM cognitive radio networks using multi-user detection and square-law combining techniques

10.11591/ijece.v15i6.pp5401-5410
Srikantha Kandhgal Mochigar , Rohitha Ujjini Matad , Premachand Doddamagadi Ramanaik
Spectrum sensing (SS) is essential for cognitive radio (CR) networks to enable secondary users to opportunistically access unused spectrum without interfering with primary users. This article proposes a novel multi-user detection (MUD) and square-law combining (SLC) framework for SS in multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) CR networks. Traditional SS methods, especially energy detection (ED), often underperform in low signal-to-noise ratio (SNR) conditions, resulting in high false alarm rates due to noise uncertainty and multi-user interference. The multi-user detection-square-law combining (MUD-SLC) framework addresses these limitations by using MUD to separate user signals and SLC to combine energy from multiple antennas, significantly improving probability of detection (PD) while maintaining a low false alarm probability (Pfa). Simulation results show that the proposed approach achieves a PD of 0.81 at Pfa=0.15 and SNR=15 dB, outperforming conventional and advanced SS methods. Moreover, MUD-SLC demonstrates a considerable boost in detection performance, even in the presence of severe interference and noise uncertainty, leading to more reliable spectrum utilization in systems. The framework also maintains a lower Pfa, especially in dynamic wireless environments. This research work contributes to improving the efficiency and reliability of SS in CR networks.
Volume: 15
Issue: 6
Page: 5401-5410
Publish at: 2025-12-01
Show 31 of 1939

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration